
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 65, NO. 2, FEBRUARY 2017 489

Pattern and Gain Characterization Using
Nonintrusive Very-Near-Field Electro-Optical

Measurements Over Arbitrary Closed Surfaces
Kamal Sarabandi, Fellow, IEEE, Jihun Choi, Student Member, IEEE, Ali Sabet,

and Kazem Sabet, Senior Member, IEEE

Abstract— A nonintrusive near-field measurement technique
for 3-D radiation pattern and gain characterization of antennas is
presented. The method is of particular interest for low-frequency
antennas for which anechoic chambers cannot be developed and
far-field measurements are rather cumbersome. Nonintrusive,
broadband measurements are performed using an extremely
small all-dielectric electro-optical probe to measure the tangential
electric fields of an antenna under test (AUT) at a very-near
surface enclosing the antenna. Far-field radiation is computed
from a new near-field to far-field transformation formulation
using only the tangential components of the electric field over an
arbitrary surface. This procedure employs reciprocity theorem
and the excited electric current on the surface of a perfect
electric conductor enclosure having the same geometry as the
scanned surface and illuminated by a plane wave. In this way,
a full spherical radiation pattern and gain of the AUT are
easily computed without expensive computation and truncation
errors. To demonstrate the proposed approach, a miniaturized
low very high frequency antenna operating at 40 MHz with
dimensions 0.013λ0×0.013λ0 × 0.02λ0 is utilized. The far-field
results from our approach are shown to be in good agreement
with those obtained from full-wave simulation and direct far-field
measurement performed in an elevated outdoor range.

Index Terms— Antenna measurements, antenna radiation
patterns, electrically small antennas, electro-optical (EO)
system, high frequency (HF)/very HF (VHF) antennas, near-field
measurements.

I. INTRODUCTION

ACCURATE measurement of fundamental antenna para-
meters, such as input impedance, bandwidth, radiation

pattern, and gain is very important for all applications.
Knowledge of the actual antenna performance plays an impor-
tant role in designing real-world wireless communication or
radar systems. The simplest way to characterize antennas is
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of course the direct far-field measurement that can be accom-
plished in outdoor ranges or in anechoic chambers [1]–[3]. The
use of such techniques with low-frequency antennas operating
at high frequency (HF) or low very HF (VHF) bands is limited
by a number of factors. At these frequencies, the sizes of
anechoic chambers and the absorbers become prohibitively
large. Outdoor ranges require a vast space and tall towers, and
the effect of ground must be carefully examined for accurate
measurements. Special approaches to measure HF and VHF
antennas have been reported in [4]–[9]. These involve scale
modeling, utilization of aircraft-towed transmitters in antenna
measurements, design of ground-reflection ranges to minimize
the contribution of reflection from the ground, and near-field
scanning. All of these require substantial time and effort to
perform the measurements as well as a specially designed
very-large, expensive anechoic chamber in the case of indoor
measurements.

In order to circumvent these difficulties, a nonintrusive near-
field measurement system [10] using an all-dielectric and very
small electro-optical (EO) probe is presented in this paper. The
advantage of the EO probe is that it can be placed very close
to the antenna surface where the near field is very strong. For
a nonmetallic room that is sufficiently larger than the antenna
and for the antenna sufficiently away from obstacles in the
room, the use of absorbers is not critical. The criteria for
setting object distances from the antenna are established by
monitoring the reactive part of the antenna input impedance as
antenna height above ground is changed and nearby obstacles
are pushed away from the antenna surrounding. Once a stable
condition for the reactive part of the input impedance is
observed, it is assured that the field distribution over the sur-
face of antenna is dominated by the direct signal. Also at low
frequencies, reflection and scattering from dielectric walls and
objects are rather low. Hence, the contribution from multipath
signal on the probe is significantly smaller than the very strong
near field of the antenna. Conventional probes, such as loops,
short diploes, or open-ended waveguides, which make use of
metallic structures together with their connected transmission
lines, can significantly perturb the current distribution on the
antenna if they are brought to very close proximity of the
antenna. This is particularly the case if the antenna under
test (AUT) is electrically small whose dimensions are com-
parable to those conventional probes. Unlike the conventional
metallic probes, the EO probe with a very small tip of less
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than 1 mm3 connected to very thin fiber optics does not
perturb the excited currents on the antenna. The EO probe
used here is also very broadband and can be applied for all
frequencies of interest up to and beyond millimeter-waveband.
Furthermore, the computationally complicated probe compen-
sation process [11], [12] is not required, since the EO probe
measurement is nonradiative.

In [13] and [14], near-field to far-field transformation for
arbitrary enclosing near-field surfaces has been proposed.
These approaches, however, provide only an approximate
solution under the assumption that the radii of curvature
of the surface at every point are much larger than the
wavelength. Similar to our approach, they place a perfect
electric conductor (PEC) over the aperture of the antenna
with a surface magnetic current proportional to the measured
tangential electric field. Then, they apply image theory that
is only valid for infinite ground plane to remove the PEC
and double the surface magnetic current. This is only a good
approximation if the local radii of curvature over the arbitrary
surface are very large compared with the wavelength. If cubic
surfaces are used, the edges do not satisfy this condition.
In fact, there is significant edge current on the PEC, which
cannot be ignored. It is noted here that the dimension of
the box for the problem at hand is only a fraction of the
wavelength and image theory cannot be applied here. In this
paper, a novel exact near-field to far-field transformation for
all types of antennas without truncation errors regardless of
the size of the scanned area is presented. For this approach,
only the tangential components of the electric field over an
arbitrary closed surface encompassing the AUT are required.
The reciprocity theorem in conjunction with the induced
surface current excited by a plane wave on a metallic surface
in place of the scanned enclosing surface is used. The induced
surface electric current density illuminated by an incident
plane wave in a desired direction over the metallic surface
is calculated using a full-wave numerical simulation. Using
the reaction theorem, the radiated field in a desired direction
is computed as will be shown later. The validity of this
antenna characterization technique is demonstrated, utilizing
a recently developed miniaturized folded dipole antenna at
low-VHF band [2], [15]. The computed antenna parameters
from the proposed technique are compared with those obtained
from direct far-field measurement in a special elevated range
and full-wave electromagnetic (EM) simulation. In Section II,
the EO-based near-field approach is presented. In Section III,
a new formulation for near-field to far-field transformation
applicable for arbitrary shape scanned surface is provided.
Section IV presents the measurement calibration and validation
of the proposed approach.

II. ELECTRO-OPTICAL NEAR-FIELD MEASUREMENT

Nonintrusive, high-resolution, near-field measurement is
of interest for number of applications, including RF circuit
diagnostics, EMC/EMI testing, and antenna characterization.
Despite the existence of many near-field radiation pattern
characterization methods, as will be shown here, there are a
number of important advantages for nonintrusive and high-
resolution near-field sampling that EO measurements can

provide [16], [17]. One such advantage pertains to the mea-
surement of antennas at low frequencies. For applications,
such as source tracking [18] and reliable communication in
complex environments [19], [20], an extremely small and
lightweight antenna operating at low-VHF band has been
developed. For this antenna, pattern and gain measurements
were carried out in an outdoor elevated range with nonmetallic
towers. A standard far-field measurement setup, in which both
the transmitting and the receiving antennas are mounted on
top of a tall fiberglass tower (>12 m), was used to create
nearly free-space conditions in the far-field region. For this
measurement, considerable efforts are needed because of the
cumbersome antenna setup and scanning. The height of AUT
above ground must also be chosen to be much larger than the
transmit and receive antennas separation to minimize the effect
of ground reflection. Uncontrollable environmental conditions,
such as rain, wind, and temperature variations, also add to the
complexity of the elevated-range measurement. Furthermore,
for small antennas, the effect of the feed cables on the antenna
impedance and radiation pattern is a major issue and was
observed during the measurement. A small, battery-operated
source module had to be designed and connected directly to the
antenna in the elevated range to avoid the effects of the long
cables. The complexity in such measurements necessitates the
development of an alternative approach that is more accurate
and time- and cost-effective.

Near-field scanning systems are developed as an alternative
to the cumbersome outdoor far-field range or costly anechoic
chamber facilities. However, conventional near-field scanning
systems have substantial disadvantages at low frequencies.
These systems are traditionally designed for antennas operat-
ing at microwave frequencies and higher with large apertures
to circumvent the challenges associated with satisfying the far-
field requirement. As alluded to before, the standard probes
for near-field systems are small metallic antennas or apertures
for picking up the near fields of the AUT. Such metallic
probes and the associated transmission lines connected to
them cannot be placed very close to the AUT, as they can
significantly modify the current distribution on the antenna,
and thereby would distort the measured near-field distribution.
These probes are also band limited and have a relatively large
physical dimension at low frequency. For conventional near-
field systems, the minimum distance between the probe and
the AUT is the far-field distance of the small probes. This
minimum distance oftentimes is larger or comparable to the
wavelength. For a short dipole, for example, requiring the ratio
of the radiating term to the largest nonradiating term to be
larger or equal to 10, the far-field distance is computed to
be 1.6 λ. Even if we were to relax the radiating to nonradiating
terms ratio to be larger than 3, the minimum distance must
still be larger than 0.6 λ. Obviously, for an AUT that operates
at low-VHF band or lower, this distance amounts to many
meters. In [9], for instance, a spherical near-field system
in VHF range in a large rectangular anechoic chamber with
pyramidal absorber is introduced. The probing distance in the
system is large (2 m) due to the use of conventional metallic
probe consisting of two resistively loaded crossed dipoles,
each 40 cm in length. For the general near-field antenna
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Fig. 1. Fiber-based electro-optic probe structure used in our measurement
system.

measurement applications of EO probes, in addition to the
nonintrusive nature of EO probes, it should be mentioned that
probe compensation process is not required [16], [21].

The system employed in this paper is a commercial mea-
surement system, called NeoScan, developed by EMAG Tech-
nologies. It provides significantly superior performance to the
conventional near-field scanning systems as described before.
This system operates based on Pockels effect, which measures
the phase retardance of an optical beam through a small crystal
immersed within an RF electric field [22]. This EO effect
provides a means for modulating the polarization of the optical
beam, which makes it possible to detect the presence of an
electric field impinging on a very small crystal (1 mm ×
1 mm × 1 mm) of the EO probe in the system. The EO field
probe is all dielectric with no metallic components and can be
used to measure the electric fields with extremely small spatial
resolution (minimum sampled space <10 μm corresponding to
the focused laser beam within the EO crystal). These probes
can be brought to the very-near-field region of the antenna
where the fields are very strong. Another advantage of the EO
probe is an extremely wide bandwidth (3 MHz–100 GHz or
higher). The probe can be calibrated to measure the absolute
magnitude and relative phase of electric fields over a wide
dynamic range (0.1 V/m–1 MV/m). Fig. 1 shows the picture
of the EO probe used in our measurements.

III. 3-D NEAR-FIELD TO FAR-FIELD TRANSFORMATION

Based on uniqueness theorem, the fields outside a region
enclosing the sources of the EM field can be uniquely deter-
mined if the tangential electric or magnetic field over the
enclosing surface is known. Suppose that the tangential electric
field of an AUT over an arbitrary surface enclosing the antenna
is measured by the EO probe of NeoScan. Far-field quantities
can then be calculated, employing the radiometrically cali-
brated values of the measured near fields. The geometry of
a small antenna enclosed by surface S is shown in Fig. 2.
For this problem, the measured tangential electric field is
represented by Em

t (r). To calculate the field outside S using
just the tangential electric field, the field equivalence principle
can be invoked [23]. In this approach, we assume that the

Fig. 2. Imaginary rectangular box composing six scanned surfaces is centered
at the origin of a Cartesian coordinate system whose axes are parallel to the
edges of the box.

fields inside S are zero and introduce instead fictitious surface
electric and magnetic currents proportional to the tangential
magnetic and electric fields. Since the tangential magnetic field
components are not available, the surface S may be replaced
by a PEC, over which the surface magnetic current is placed.
Thus, the problem is reduced to finding the total field radiated
from the magnetic current in the presence of the PEC box
having the same surface as S. The magnetic current is given by

Jm
m = −n̂ × Em

t (1)

where n̂ is a unit vector directed normally outward from S
and Em

t is the electric field generated by the AUT over S.
Of course, for such problems and arbitrary S, an exact

analytical solution does not exist. For a rectangular box, for
example, one may resort to an approximate analytical solution
using image theory. That is, assuming the PEC box consists
of electrically large flat sides, the image theory can be applied
by doubling the magnetic current on the sides of the enclosing
rectangular box and then computing the radiating field in the
absence of the box using the planar near-field to far-field
transformation [24] for all six surfaces. This approach ignores
the truncation effects and can introduce significant error when
the dimensions of the box are small or comparable with
the wavelength. To resolve this issue, an alternative method
based on numerical simulations and the reciprocity theorem is
introduced.

Consider the rectangular cuboid as the enclosing surface S
centered at the origin of a Cartesian coordinate system whose
axes are parallel to the edges of the cuboid. Using the source
equivalence principle, the rectangular cuboid surface is made
into a PEC surface. Now let us suppose that the metallic cuboid
is being illuminated by the fields of an infinitesimal magnetic
dipole located at the observation point in the far-field region
at a distance r0 from the origin and at an orientation denoted
by θ and φ. The volumetric magnetic current distribution for
this source can be written as

Jb
m = p̂δ(r − r0) (2)
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where p̂ is a unit vector along the dipole, r is the radial
distance from the origin, and δ(r− r0) is a delta function. The
far-field expression for the radiated field from the infinitesimal
dipole at a point around the origin can be found from

Eb
i = ik

4π

eik R

R
p̂ × R̂ (3)

where k is the angular wavenumber given by k = 2π/λ0 and

R = |r − r0| ≈ r0 − r · r̂0 (4a)

R̂ = r − r0

|r − r0| ≈ −r̂0 (4b)

r̂0 = sin θ cos φ x̂ + sin θ sin φ ŷ + cos θ ẑ. (4c)

Upon inserting (4a) and (4b) into (3), we have

Eb
i = −ik

4π

eikr0

r0
e−ikr̂0 ·r p̂ × r̂0. (5)

In a similar manner, it can be shown that

Hb
i = −ik

4πη0

eikr0

r0
e−ikr̂0 ·r (

p̂ × r̂0
) × r̂0 (6)

where η0 = √
μ/ε is the free space characteristic impedance.

Applying the reaction theorem [25] to the surface and volu-
metric magnetic currents given by (3) and (4) leads to

∫∫

S
H b(r) · J m

m (r)ds =
∫∫∫

H (r) · J b
m(r)dv (7)

where Hb(r) is the total magnetic field (incident plus scattered)
generated by the infinitesimal magnetic current source on the
surface of the enclosing PEC box. Also, H(r) is the radiated
field from the AUT. Here, we have used the fact that the
tangential component of the total electric field n̂ × Eb(r)
is equal to zero on the surface according to the boundary
condition over PEC surfaces, such that the surface integral
of its term over the box disappears.

Using (1) and (2) in (7), the radiated magnetic field from
the AUT can be calculated from

p̂ · H(r0) = −
∫∫

s
Hb(r) · n̂ × Em(r) ds. (8)

Noting that n̂ × Hb = Jb
s (r) is the induced electric current on

the surface of the PEC enclosure

p̂ · H(r0) =
∫∫

s
Em

t (r) · Jb
s (r) ds. (9)

Hence, the radiated magnetic field in the direction of r0 can
easily be attained from the measured tangential electric field
and the calculated induced surface electric current density over
the PEC box. To further simplify calculation of Jb

s (r), plane
wave excitation instead of the magnetic dipole source may be
considered. This can be done, since the infinitesimal magnetic
dipole is in the far-field region of the AUT. Accordingly, the
incident electric field given by (5) can be locally regarded as a
plane wave. Denoting the induced surface current on the PEC
enclosure from an incident plane wave with intensity 1 V/m
and polarization p̂ × r̂0 propagating along −r̂0 by J p

s (r), (9)
can be written as

p̂ · H(r0) = −ik

4π

eikr0

r0

∫∫

s
Em

t (r) · J p
s (r)ds. (10)

Fig. 3. Magnitudes of the induced surface electric currents on the PEC
enclosure S, illuminated by an incident plane wave at a given direction
(θ = 90° and ∅ = 0°).

Fig. 4. Phases of the induced surface electric currents on the PEC enclosure
S, illuminated by an incident plane wave at a given direction (θ = 90° and
∅ = 0°).

It is noted that J p
s (r) can be computed analytically for

canonical enclosures, such as spheres and cylinders or numer-
ically for the others using a standard full-wave approach.
Figs. 3 and 4 show an example of the computed induced
surface electric current density over the PEC enclosure in
terms of magnitudes and phases when a plane wave with the
intensity of 1 V/m at θ = 900̊ and ∅ =0̊ is incident on S.
Similarly, by computing all the induced surface currents as
a function of θ and φ, and then applying them into (10)
with the measured very-near fields, the radiated electric field
(E = η0H × r̂0) from the AUT is calculated. Here, numerical
calculation of the integrals in (10) is performed based on
trapezoidal method of integration [26].

The antenna gain can be computed, since the value of the
electric field and the input power Pin to the AUT is available.
First, the radiation intensity U(θ,∅), defined as the power
radiated from an antenna per unit solid angle, is evaluated from
the calculated far field. Defining electric-field intensity E (r)
of the AUT at the far-field region as

E(r) = e− j kr

r
[Fθ (θ, φ)θ̂ + Fφ(θ, φ)φ̂] (11)

where Fθ (θ, φ) and Fφ (θ, φ) are the radiated electric field
strength from the AUT in the (θ, φ) direction, the antenna
gain G can then be expressed as [27]

G = 4πU(θ,∅)

Pin
(12)

where

U(θ,∅) = 1

2η0
[|Fθ (θ, φ)|2 + |Fφ(θ, φ)|2].
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Fig. 5. Experimental schematic of the EO probe calibration system utilizing
a standard TEM cell.

IV. MEASUREMENT CALIBRATION AND VALIDATION

In order to maintain the accuracy and reliability of very-
near-field antenna measurements, the field probe system must
remain stable over the entire measurement period. Stabilization
of the EO probe in our system is consistently monitored by a
managing program developed with a system design software
(National Instruments LabVIEW 2011) while the probe scans
near fields of the AUT. In order to achieve the maximum
EO signal at a given condition for the best probe sensitiv-
ity, a system optimization procedure is also conducted. This
involves determining a stable optimal bias point applied to a
polarization controller consisting of four dynamic retardation
plates in NeoScan, which is utilized to control a polarization
state of the optical beam in the fiber.

The EO system directly measures the intensity of modu-
lated optical beams due to the variation of the RF electric
field signals. To obtain the absolute value of the electric
field, the probe has to be calibrated against a known field.
In other words, the probe calibration is used to find the linear
relationship between the measured signal power from the
system output and the electric field intensity at the probe tip.
This calibration can be performed using a standard transverse
EM (TEM) cell in which a known and uniform electric
field is established [28], [29]. In the cell, since the field
strength is related to the net input power produced by an
RF source, the electric field in terms of the input power can
be calculated [30]. Thus, the EO probe can be calibrated
by sensing the known fields for a certain RF input power.
As shown in Fig. 5, in our calibration setting, a uniform
electric field is linearly polarized in a direction parallel to the
septum in the TEM cell. Therefore, by aligning the axis of
the EO crystal at the tip of the probe so as to sense horizontally
polarized fields and then by placing the probe in the center
of the test region through a small hole in the top wall of
the cell, the probe is calibrated for the correct polarization.
A power amplifier (PA), which can provide a continuous-
wave output power up to 20 W, is utilized to characterize
the EO probe over a wide dynamic range. The EO signals
measured using a spectrum analyzer versus the calculated elec-
tric field strength corresponding to the net power in the cell at
40 MHz (the center frequency of AUT) are presented in Fig. 6.
The calibration slope shows a good linear relation between
the EO signal in μV and the electric field intensity in V/m.

Fig. 6. Actual electric field strength corresponding to its EO signal captured
by the EO field probe. This graph shows a linear relationship between them.

Fig. 7. (a) Side and (b) top view of a VHF miniaturized folded dipole antenna
used as the AUT. The circuit model is superimposed on the side view.

This linearity can be denoted by E = αV , where α is the
calibration coefficient.

A. Test Antenna

To demonstrate the unique capability of the EO-based near-
field measurement, a recently developed miniaturized antenna
operating near 40 MHz is used as AUT. Antenna miniatur-
ization is realized by introducing 180° phase shifters that are
composed of lumped inductors and an open stub, in which
both ends of the phase shifters are connected to two short,
vertical wires that are radiating in-phase [2], [15]. In this way,
in-phase vertically polarized fields at resonance can be
produced from the wires, which results in doubling the
antenna effective height, and consequently, enhanced gain
without physically increasing the antenna height. Moreover,
to minimize the overall antenna loss and mass, optimized
rectangular air-core inductors with high quality factor (Q)
are used in the phase shifters. Fig. 7 shows the side and
top view of the antenna with its equivalent circuit model
superimposed over the side view. Input reflection coefficient
S11 of the antenna is simulated by a full wave EM simulator
(Ansoft HFSS 15) based on the finite-element method and
compared with that of the fabricated one measured with a
calibrated network analyzer, as shown in Fig. 8. The reso-
nant frequency of the AUT is measured to be 40.06 MHz,
which is in good agreement with the simulation.
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Fig. 8. Measured and simulated input impedance of the designed antenna.

B. Measurement Results

As mentioned earlier, the surface of rectangular cuboid
enclosing the AUT is considered as the probed surface. This
allows for the utilization of planar near-field scanning that
requires a simple X–Y translation unit. The planar near-field
scanning is performed over six surfaces of the rectangular
cuboid, as shown in Fig. 2. The spatial resolution of the
scanned grid and the probe distance from the aperture of
the AUT are also important parameters of the measurement
setup. According to the sampling theorem [31], the spacing
between sampled points must be at least λo/2 so as not to
introduce reconstruction errors known as aliasing. Moreover,
the spatial resolution is related to probe distance in the
sense that choosing one would determine the other. For large
aperture antennas, the higher is the sampling interval, the
faster and more efficient is the measurement. The common
relationship used between the sampling interval and probe
distance is given by [24]


s = λ0

2

√
1 + ( λ0

dp
)
2

(13)

where 
s is the sampling interval and dp is the probe distance.
For small antennas that are proportional or smaller than a
wavelength, the sampling interval should be even smaller than
what is given by (13). As mentioned before, for small antennas
at low frequencies, measurements should be performed very
near to the smallest antenna-enclosing surface. This ensures
that the dominant component of the measured field is the direct
antenna field and not the multipath. In addition, since the fields
are strongest, there the highest signal-to-noise ratio is achieved
for a given input power. The rectangular cuboid probed area
S is chosen to be as small as possible so as not to increase
the number of sampled points Ni (i = x, y, and z), and conse-
quently measurement time. The measurement parameters used
are shown in Table I.

The very-near-field measurements of the miniaturized
low-VHF antenna were conducted in a small indoor space,
as shown in Fig. 9. To avoid unwanted EM coupling effects
between the radiating element and the surrounding objects,
the antenna is placed away from nearby objects, so that
the scatterers are not within the antenna near-field reactive
region. The RF field probe system consists of a fiber-coupled

TABLE I

MEASUREMENT PARAMETERS

Fig. 9. Actual measurement setup for very-near-field measurements of
the AUT. The measurements were performed in a small indoor space.

EO probe, PA, signal generators, lock-in amplifier, and
NeoScan, including EO modulators and demodulators and
sensitive RF components. The system is also equipped with a
high precision two axes motor controlled X–Y table, which
can move across an area of up to 25.4 cm × 25.4 cm,
to position and move the probe. In this experiment,the EO
probe is mounted via a lightweight PVC pipe connected to
the X–Y table. The pipe provides a separation between all
the supporting instruments and the AUT, as shown in Fig. 9.
The surfaces of the rectangular box enclosing the AUT are
scanned separately and the measured data are utilized for far-
field prediction from postprocessing.

The raw data from the scan are multiplied by the calculated
calibration coefficient α to obtain the absolute value of the
tangential electric fields. Figs. 10 and 11 show the simulated
and measured two-dimensional magnitude and phase distribu-
tions of the tangential electric field on the front, left, and top
faces of the rectangular box. To compare the absolute value
of the measured field with simulations, the available input
power to the AUT delivered by the RF source employed for
measurements is used to calculate the voltage at the antenna
input terminals. The comparison between the measurement
and simulation of near fields shows an excellent agreement
between the magnitude of the measured and simulated results.
Note that here the data comparison is absolute and not relative.
There is a constant 30° phase difference between the measured
and simulated results. The reason for this is that NeoScan
system cannot measure the absolute phase, as the phase of the
local oscillator in the system cannot be determined. Such a
difference, however, does not affect the accuracy in the far-
field characterization of the AUT, since the relative phase
distribution is important. It should also be noted that the
absolute phase for each surface is adjusted to that of an
adjacent surface by making sure the measured values at one
common edge agree.
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Fig. 10. Simulated (40.01 MHz) and measured (40.06 MHz) very-near-field maps showing the tangential components (magnitudes) of the electric fields on
the front, left, and top surface of the imaginary box shown in Fig. 2.

Fig. 11. Simulated (40.01 MHz) and measured (40.06 MHz) very-near-field maps showing the tangential components (phases) of the electric fields on the
front, left, and top surface of the imaginary box shown in Fig. 2.

With this data, the far-field pattern and gain are evaluated
using the procedure outlined in Section III. Fig. 12 shows
the far-field radiation patterns in two orthogonal principal
planes (E-plane and H -plane), together with simulated and
measured results taken from the far-field measurements in
the elevated range (using a small source module for feeding
the AUT) discussed earlier. The patterns also closely resemble
that of a short electric dipole with the maximum gain occurring

at θ = 900̊. It should be mentioned that the difference of the
radiation pattern is mainly due to a small difference in the
antenna feed configurations in the simulation and the actual
setup. In the actual setup for the very-near-field measurement,
a coaxial cable was connected for feeding the AUT. The
antenna excites a current over the surface of the outer layer of
the coaxial feed line, which in turn changes the near field on
the surface of the scanned area adjacent to the coaxial feed.
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Fig. 12. Antenna radiation patterns (vertical polarization) in (a) E-plane
(xz plane) and (b) H -plane (xy plane), computed by different approaches (the
scale in the plot is ranging from −50 to −10 dB).

TABLE II

ANTENNA GAIN COMPARISON

This undesired effect can be eliminated by using a small source
module, as reported in [2]. Table II presents a comparison
of the antenna gain at resonance obtained from the proposed
very-near-field method, simulation, and the elevated range
far-field method.

V. CONCLUSION

A novel near-field measurement method for the charac-
terization of 3-D radiation pattern and gain of antennas is
presented. The approach is based on measuring the tangential
components of electric field over arbitrary closed surfaces
that enclose the AUT very close to the antenna boundary
using a very small nonintrusive, all-dielectric, and broadband
EO probe. This approach is shown to be a very effective and
time-efficient method for accurate characterization of HF/VHF
antennas for which anechoic chambers cannot be built and
the far-field methods cannot provide accurate results due to
different factors, such as the presence of the ground plane
and proximity of feeding cables and measurement instruments.
A new formulation based on the field equivalence princi-
ple and reaction theorem is developed to perform the near-
field to far-field transformation without any approximations.
To examine the validity of the proposed approach, an electri-
cally small VHF (40 MHz) antenna is used. The measurements
are performed indoor in a laboratory setting with objects
removed from the near-field region of the antenna. The gain
and radiation pattern are compared with simulation results and
an elevated far field measured results, and excellent agreement
is demonstrated.
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