Changes

V&V Article 5: Modeling Dispersive Materials Using EM.Tempo

261 bytes added, 14:16, 29 September 2016
/* Reflection from a Lorentz Medium */
:<math> \varepsilon(\omega) = \varepsilon_{\infty} - G_1 \dfrac{(\varepsilon_{s1} - \varepsilon_{\infty}){\omega_1}^2}{\omega^2 - 2j\omega \delta_1 - {\omega_1}^2} - G_2 \dfrac{(\varepsilon_{s2} - \varepsilon_{\infty}){\omega_2}^2}{\omega^2 - 2j\omega \delta_2 - {\omega_2}^2} </math>
where <math>\omega _p</math> and <math>\delta_p</math> are the angular resonant frequency and angular damping frequency corresponding to the p''th'' pole, respectively, and both are expressed in rad/s. Similar to a Debye material, <math>\Delta \varepsilon_p = \varepsilon_{sp} - \varepsilon_{\infty}</math> represents the change in permittivity due to the p''th'' pole. The coefficients G<sub>1</sub> and G<sub>2</sub> are the weights used for the two pole terms. In order to model the half-space, a periodic unit cell of dimensions 2mm &times 2mm &times 50mm is considered as shown in Figure 5. The lateral periods are 2mm in both X and Y directions. The values of the parameters in the above expression are given in the table below:
{| class="wikitable"In this project, the Lorentz material has the parameters |-| &omegaepsilon;<sub>p&infin;</sub> | 1.5|-! scope= 2"col"| Parameter! scope="col"| Value|-| &omega;<sub>1</sub>| 1.202542566&times;10<sup>1211</sup> rad/s, |-| &delta;<sub>p1</sub> = | 1.2566&times;10<sup>10</sup>|-| &epsilon;<sub>s1</sub>| 3|-| G<sub>1</sub>| 0.4|-| &omega;<sub>2</sub>| 3.1416&times;10<sup>1311</sup> rad|-| &delta;<sub>1</s, and sub>| 3.1416&Deltatimes;10<sup>10</sup>|-| &epsilon; = 4.8e7. The silver<sub>s1</sub>| 3|-particles increase the absorption of the solar cell [2]| G<sub>1</sub>| 0. 6|}
The table below summarizes the simulation parameters:
28,333
edits