*EM.Ferma provides two options for thermal boundary conditions on the domain box. The Dirichlet boundary condition is the default option and is specified as a fixed temperature value on the surface of the domain walls. By default, this value is 0°C. The Neumann boundary condition specifies the normal derivative of the temperature on the surface of the domain walls. This is equivalent to a constant heat flux passing through the domain walls and its value is specified in W/m<sup>2</sup>. A zero heat flux means a perfectly insulated domain box and is known as the adiabatic boundary condition.
There is a one-to-one correspondence between electrostatic and thermal simulation entities:
{| class="wikitable"
|-
! scope="col"| Electrostatic Item
! scope="col"| Corresponding Thermal Item
|-
| style="width:200px;" | Electric Scalar Potential
| style="width:200px;" | Temperature
|-
| style="width:200px;" | Electric Field
| style="width:200px;" | Heat Flux Density
|-
| style="width:200px;" | Perfect Electric Conductor
| style="width:200px;" | Perfect Thermal Conductor
|-
| style="width:200px;" | Dielectric Material
| style="width:200px;" | Insulator Material
|-
| style="width:200px;" | Volume Charge
| style="width:200px;" | Volume Heat Source
|}
To modify the boundary conditions, right-click on "Boundary Conditions" in the navigation tree, and select "Boundary Conditions..." from the contextual menu to open the Boundary Conditions Dialog.