Changes

Glossary of EM.Cube's Python Functions

2,564 bytes added, 21:47, 10 April 2017
DESCRIPTION: Creates a base point set in [[EM.Terrano]]. If the base point set group 'label' already exists, the group is activated.
 
====bh_step====
 
SYNTAX: bh_step({{ArgTypeReal}} x, {{ArgTypeReal}} T)
 
EXAMPLE: ''bh_step(0.5,1)''
 
DESCRIPTION: Computes and returns the Blackman-Harris step function.
 
====bh_window====
 
SYNTAX: bh_window({{ArgTypeReal}} x, {{ArgTypeReal}} T)
 
EXAMPLE: ''bh_window(0.5,1)''
 
DESCRIPTION: Computes and returns the Blackman-Harris window function.
====box====
DESCRIPTION: Creates a Gaussian beam source in [[EM.Tempo]]. If the Gaussian beam source 'label' already exists, its properties are modified.
 
====geo====
 
SYNTAX: geo({{ArgTypeReal}} x, {{ArgTypeReal}} y)
 
EXAMPLE: ''geo(1,2)''
 
DESCRIPTION: Computes and returns the geometric mean of x and y: sqrt(x*y).
====get_area====
DESCRIPTION: Groups a number of objects into a composite object with the given label.
 
====harm====
 
SYNTAX: harm({{ArgTypeReal}} x, {{ArgTypeReal}} y)
 
EXAMPLE: ''harm(1,2)''
 
DESCRIPTION: Computes and returns the harmonic mean of x and y: 2/(1/x+1/y).
====helix====
DESCRIPTION: Creates a permanent magnet source group in [[EM.Ferma]]. If the magnet group 'label' already exists, the group is activated.
 
====mcos====
 
SYNTAX: mcos({{ArgTypeReal}} x, {{ArgTypeReal}} r)
 
EXAMPLE: ''mcos(0.5,2)''
 
DESCRIPTION: Computes and returns the super-quadratic cosine function of order r.
 
====mean====
 
SYNTAX: mean({{ArgTypeReal}} x, {{ArgTypeReal}} y)
 
EXAMPLE: ''mean(1,2)''
 
DESCRIPTION: Computes and returns the arithmetic mean of x and y: 0.5*(x+y).
====merge_curve====
DESCRIPTION: Transfers an object from its current material/object group node in the navigation tree to another node or optionally to another [[EM.Cube]] module.
 
====msin====
 
SYNTAX: msin({{ArgTypeReal}} x, {{ArgTypeReal}} r)
 
EXAMPLE: ''msin(0.5,2)''
 
DESCRIPTION: Computes and returns the super-quadratic sine function of order r.
====nurbs_curve====
DESCRIPTION: Computes and returns the ramp function: x if x>0, 0 if x<0.
 
====rand====
 
SYNTAX: rand({{ArgTypeReal}} x, {{ArgTypeReal}} y)
 
EXAMPLE: ''rand(0,1)''
 
DESCRIPTION: Computes and returns a random number between x and y using an uniform distribution.
====random_group====
DESCRIPTION: Creates or modifies a revolution object from a specified object. If modifying an existing revolution object, the pre-existing primitive object is used. (x0,y0,z0) specifies the center of revolution, and (uX,uY,uZ) specifies the revolution axis. The revolution angle "rot_angle" is given in degrees.
 
====rosen====
 
SYNTAX: rosen({{ArgTypeReal}} x, {{ArgTypeReal}} y, {{ArgTypeReal}} a, {{ArgTypeReal}} b)
 
EXAMPLE: ''rosen(0.5,0,1,2)''
 
DESCRIPTION: Computes and returns the Rosenbrock function: (a-x)**2 + b*(y-x**2)**2.
====rotate====
DESCRIPTION: Creates a Hertzian short dipole source. If the short dipole source 'label' already exists, its properties are modified.
 
====sigmoid====
 
SYNTAX: sigmoidnc({{ArgTypeReal}} x, {{ArgTypeReal}} a)
 
EXAMPLE: ''sigmoid(0.5,1)''
 
DESCRIPTION: Computes and returns the sigmoid function of slope a: 2/(1 + exp(-a*x)) - 1.
====sinc====
DESCRIPTION: Computes and returns the periodic square wave function of period T = 2, oscillating between two values +1 and -1 and having a value of +1 at x = 0.
 
====sqr2====
 
SYNTAX: sqr2({{ArgTypeReal}} x, {{ArgTypeReal}} y)
 
EXAMPLE: ''sqr2(0,1)''
 
DESCRIPTION: Computes and returns the sum of squares of x and y: x**2 + y**2.
 
====sqr3====
 
SYNTAX: sqr2({{ArgTypeReal}} x, {{ArgTypeReal}} y, {{ArgTypeReal}} z)
 
EXAMPLE: ''sqr2(0,1,2)''
 
DESCRIPTION: Computes and returns the sum of squares of x, y and z: x**2 + y**2 + z**2.
 
====sqrt2====
 
SYNTAX: sqrt2({{ArgTypeReal}} x, {{ArgTypeReal}} y)
 
EXAMPLE: ''sqrt2(0,1)''
 
DESCRIPTION: Computes and returns the radius of the 2D point (x,y): sqrt(x**2 + y**2).
 
====sqrt3====
 
SYNTAX: sqrt3({{ArgTypeReal}} x, {{ArgTypeReal}} y, {{ArgTypeReal}} z)
 
EXAMPLE: ''sqrt3(0,1,2)''
 
DESCRIPTION: Computes and returns the radius of the 3D point (x,y,z): sqrt(x**2 + y**2 + z**2).
====step====
28,333
edits