Changes

EM.Tempo

6,008 bytes added, 22:11, 30 August 2016
/* Generating the FDTD Mesh in EM.Tempo */
== Generating the FDTD Mesh in EM.Tempo ==
=== EM.Tempo's Mesh Types === [[EM.Tempo]] generates a brick volume mesh for FDTD simulation. The FDTD mesh is a rectangular Yee mesh that extends to the entire computational domain. It is primarily constructed from three mesh grid profiles along in the XY, YZ and ZX principal planes. These projections together create a 3D mesh space consisting of a large number of cubic volume cells (voxels) carefully assembled in a way that approximates the shape of the original structure.
In EM.Tempo, you can choose one of the three FDTD mesh types:
* Fixed-Cell Mesh
EM.Tempo's default default mesh generator produces an adaptive brick mesh of your physical structure.
[[Image:Info_icon.png|40px]] Click here to learn more about '''[[Mesh_Generation_Schemes_in_EM.Cube#Working_with_Mesh_Generator | Working with Mesh Generator ]]'''.
=== Discretizing the Physical Structure Using the Adaptive Yee Mesh === EM.Tempo's default mesh generator creates an adaptive brick volume mesh that uses a variable staircase profile, where the grid line spacings vary with the curvature (derivative) of the edge object edges or facefaces. As a result, a higher mesh resolution is produced at "curved" areas to better capture the geometrical details. The resolution of the adaptive FDTD mesh is driven by the '''Mesh Density''', expressed in cells per effective wavelength. Since FDTD is a time-domain method and the excitation waveform may have a wideband spectral content, the effective wavelength is calculated based on the highest frequency of the project: f<sub>max</sub> = f<sub>0</sub> + &Delta;f/2, where f<sub>0</sub> (or fc) is your project's center frequency and &Delta;f (or BWbw) is its specified bandwidth. In other words, the effective wavelength in the free space is &lambda;<sub>0,eff</sub> = c / f<sub>max</sub>, c being the speed of light in the free space. The effective wavelength in a dielectric material with relative permittivity &epsilon;<sub>r</sub> and permeability &mu;<sub>r</sub> is given by &lambda;<sub>d,eff</sub> = &lambda;<sub>0,eff</sub> / &radic;&epsilon;<sub>r</sub>&mu;<sub>r</sub>.  The adaptive FDTD mesh, by default, produces different grid cell sizes in the free space regions than inside dielectric regions. The effective wavelength in a dielectric material with relative permittivity e<sub>r</sub> and permeability µ<sub>r</sub> is given by &lambda;<sub>d,eff</sub> = &lambda;<sub>0,eff</sub> / &radic;&epsilon;<sub>r</sub>&mu;<sub>r</sub>. Therefore, the average ratio of the cell size in a dielectric region to the cell size in the free space is 1/&radic;(&epsilon;<sub>r</sub>&mu;<sub>r</sub>). The adaptive FDTD mesh generator also takes note of the geometrical features of the objects it discretizes. This is more visible in the case of curved solids, curves surfaces and curved wires or obliquely oriented planes and lines which need to be approximated using a staircase profile. The mesh resolution varies with the slope of the geometrical shapes and tries to capture the curved segments in the best way. Another important feature of the adaptive FDTD mesher is generation of gradual grid transitions between low-density and high-density mesh regions. For example, this often happens around the interface between the free space and high permittivity dielectric objects. Gradual mesh transitions provide better accuracy especially in the case of highly resonant structures. A carefully calculated, "<u>'''Adaptive'''</u>" mesh of your physical structure is generated in order to satisfy the following criteria: * Optimize the number of mesh cells in each dimension. The product of the number of cells in each dimension determines the total mesh size. The larger the mesh size, the longer the simulation time, especially with the CPU version of the FDTD engine. Also, a very large mesh size requires more RAM, which may exceed your GPU memory capacity. Set the '''Minimum Mesh Density''' to a moderately low value to keep the mesh size manageable, but be careful not to set it too low (see the next item below).* Ensure simulation accuracy by requiring an acceptable minimum number of cells per wavelength through each object and in the empty (free) space between them and the computational domain boundaries. An effective wavelength is defined for each material at the highest frequency of the project's specified spectrum. We recommend a '''Minimum Mesh Density '''of at least 15-20 cells/ wavelength. But for some resonant structures, 25 or even 30 cells per wavelength may be required to achieve acceptable accuracy. As you reduce the mesh density, the simulation accuracy decreases.* Accurately represent and approximate the boundaries of edges or surfaces that are not grid-aligned by closely adhering to their geometric contours. This is controlled by the '''Minimum Grid Spacing Over Geometric Contours''', which can be specified either as a fraction of the free space grid spacing or as an absolute length value in project units.* Maximize the minimum grid spacing in any dimension inside the computational domain and thus maximize the simulation time step. The time step size is dictated by the CFL stability criterion and is driven by the smallest grid spacing in each dimension. The smaller the time step, the larger the number of time steps required for convergence. This is controlled using the '''Absolute Minimum Grid Spacing''', which can be specified either as a fraction of the free space grid spacing or as an absolute value. It is critical to accurately represent and precisely maintain the object edge/surface boundaries in certain structures like resonant antennas and filters, as the phase of the reflected fields/waves is affected by the object boundary positions. When object boundaries are very close to each other, the mesh needs to represent them by two separate, but very closely spaced, grid lines. To control the minimum allowed grid spacing, use the '''Absolute Minimum Grid Spacing '''settings,* Maintain a smooth grid with no abrupt jumps from low-density to high-density regions. This feature is enabled with the '''Create Gradual Grid Transitions '''check box (always checked by default). When [[EM.Cube]] generates an FDTD mesh, a large number of geometrical considerations are taken into account. These include the bounding box of each object and its corners, the ends of a line, the apex of a cone or pyramid, or the locations of lumped sources, field probes and sensors, vertices of plane wave or far field boxes, to name a few examples. These points are “locked” as fixed grid nodes in the FDTD mesh. [[EM.Cube]] determines these points internally to generate a mesh that best approximates the original structure. As you saw earlier, you can use the FDTD mesh settings to control the shape and resolution of the mesh, for example, around the curved portions of your structure, or on slanted lines or faces, etc. These settings are global and apply to all the objects making up your physical structure. You can control the global mesh more selectively using the Advanced FDTD Mesh Settings Dialog. To open this dialog, click the '''Advanced '''button at the bottom of the FDTD Mesh Settings dialog. For example, you can control the quality of the gradual grid transitions by setting the value of '''Max Adjacent Cell Size Ratio'''. The default value of this parameter is 1.3, which maintains a smooth grid line spacing scheme with no more than 1:1.3 ratio for adjacent cells. By default, grid lines are enforced at all source and observable locations. You have the option to disable this feature and round up source locations to their closest grid lines. You may also uncheck the box labeled "Adapt mesh resolution to material properties". In that case, the same effective wavelength will be used to determine the mesh resolution inside all materials as well as the free-space regions.
[[Image:Info_icon.png|40px]] Click here to learn more about '''[[Mesh_Generation_Schemes_in_EM.Cube#EM.Tempo.27s_Adaptive_Brick_Mesh_Generator | EM.Tempo's Adaptive Brick Mesh Generator]]'''.
28,333
edits