Changes

EM.Terrano

7 bytes removed, 20:37, 25 August 2014
/* Wedge Diffraction From Edges */
The three triplets constitute three orthonormal basis systems. The propagation vector '''k'''' of the diffracted ray has to be constructed based on the diffraction cone as follows:
:<math> \mathbf{\hat{k}'} = \cos\phi_w \mathbf{\hat{u}_0} + \sin\phi_w \mathbf{\hat{u}_l} + \mathbf{(\hat{k} \cdot \hat{t}) \hat{t}}, \quad 0 \le \phi_w \le \alpha</math>
<!--[[File:frml8.png]]-->
The diffraction coefficients are calculated in the following way:
:<math>D_s = \frac{-e^{-j\pi/4}}{2n \sqrt{2\pi k} \sin\beta_0'}\left\lbrace\begin{align}& \cot \left(\frac{\pi + (\phi-\phi')}{2n}\right) F[kLa^+(\phi-\phi')] + \cot \left(\frac{\pi - (\phi-\phi')}{2n}\right) F[kLa^-(\phi-\phi')] + \\ & R_{0 \perp} \cot \left(\frac{\pi - (\phi+\phi')}{2n}\right) F[kLa^-(\phi+\phi')] + R_{n \perp} \cot \left(\frac{\pi + (\phi+\phi')}{2n}\right) F[kLa^+(\phi+\phi')]\end{align}\right\rbrace
</math>
:<math>D_h = \frac{-e^{-j\pi/4}}{2n \sqrt{2\pi k} \sin\beta_0'}\left\lbrace\begin{align}& \cot \left(\frac{\pi + (\phi-\phi')}{2n}\right) F[kLa^+(\phi-\phi')] + \cot \left(\frac{\pi - (\phi-\phi')}{2n}\right) F[kLa^-(\phi-\phi')] + \\ & R_{0 \|} \cot \left(\frac{\pi - (\phi+\phi')}{2n}\right) F[kLa^-(\phi+\phi')] + R_{n \|} \cot \left(\frac{\pi + (\phi+\phi')}{2n}\right) F[kLa^+(\phi+\phi')]\end{align}\right\rbrace</math>
<!--[[File:frml11.png]]-->
In the above equations, we have
:<math>\begin{align}s = |\rho_D - \rho_S| \\s' = |\rho_D - \rho_r|\end{align}
</math>
4,622
edits