Changes

Jump to: navigation, search

EM.Terrano

168 bytes added, 21:26, 23 November 2014
/* Penetration Through Thin Walls Or Surfaces */
The transmission coefficients are calculated for the two parallel and perpendicular polarizations as:
:<math> T_{\|} = \frac{(1-{\Gamma_{\|}}^2) \exp(-jk_2 d (\mathbf{ \hat{k}'' ^{\prime\prime} \cdot \hat{n}}))} { 1-{\Gamma_{\|}}^2 \exp( -2jk_2 d (\mathbf{ \hat{k}'' ^{\prime\prime} \cdot \hat{n} }) ) } </math>
:<math> T_{\perp} = \frac{(1-{\Gamma_{\perp}}^2) \exp(-jk_2 d (\mathbf{ \hat{k}'' ^{\prime\prime} \cdot \hat{n}}))} { 1-{\Gamma_{\perp}}^2 \exp( -2jk_2 d (\mathbf{ \hat{k}'' ^{\prime\prime} \cdot \hat{n} }) ) } </math>
<!--[[File:frml20.png]]-->
where
:<math> \Gamma_{\|} = \frac{ \eta_2(\mathbf{ \hat{k}'' ^{\prime\prime} \cdot \hat{n} }) - \eta_1(\mathbf{ \hat{k} \cdot \hat{n} }) } { \eta_2(\mathbf{ \hat{k}'' ^{\prime\prime} \cdot \hat{n} }) + \eta_1(\mathbf{ \hat{k} \cdot \hat{n} }) } = \frac{\eta_2 \cos\theta'' ^{\prime\prime} - \eta_1 \cos\theta} {\eta_2 \cos\theta'' ^{\prime\prime} + \eta_1 \cos\theta} = \frac{Z_{2\|} - Z_{1\|}} {Z_{2\|} + Z_{1\|}} </math>
:<math> \Gamma_{\perp} = \frac{ \eta_2(\mathbf{ \hat{k} \cdot \hat{n} }) - \eta_1(\mathbf{ \hat{k}'' ^{\prime\prime} \cdot \hat{n} }) } { \eta_2(\mathbf{ \hat{k} \cdot \hat{n} }) + \eta_1(\mathbf{ \hat{k}'' ^{\prime\prime} \cdot \hat{n} }) } = \frac{\eta_2 / \cos\theta'' ^{\prime\prime} - \eta_1 / \cos\theta} {\eta_2 / \cos\theta'' ^{\prime\prime} + \eta_1 / \cos\theta} = \frac{Z_{2\perp} - Z_{1\perp}} {Z_{2\perp} + Z_{1\perp}} </math>
<!--[[File:frml21.png]]-->
28,333
edits