<math>q = -k\nabla T(\mathbf{r})</math>
where q is the heat flux density with units of W/m<sup>2</sup>, T (<b>r</b>) is the temperature expressed in °C or °K, ∇ is the gradient operator and k is the thermal conductivity with units of W/(m.K). It can be shown that the distribution of temperature is governed by the heat diffusion equation subject to the appropriate boundary conditions:
<math> \nabla^2 T(\mathbf{r}) - \frac{1} {\alpha}\frac{\partial T}{\partial t} = \left( \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right) - \frac{1} {\alpha}\frac{\partial T}{\partial t} = - \frac{w(\mathbf{r})}{k} </math>