Difference between revisions of "EM.Cube Application Gallery"
From Emagtech Wiki
Kazem Sabet (Talk | contribs) |
Kazem Sabet (Talk | contribs) |
||
| (13 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
| + | <table> | ||
| + | <tr> | ||
| + | <td>[[image:Cube-icon.png | link=Getting_Started_with_EM.Cube]] [[image:cad-ico.png | link=Building_Geometrical_Constructions_in_CubeCAD]] [[image:fdtd-ico.png | link=EM.Tempo]] [[image:prop-ico.png | link=EM.Terrano]] [[image:static-ico.png | link=EM.Ferma]] [[image:planar-ico.png | link=EM.Picasso]] [[image:metal-ico.png | link=EM.Libera]] [[image:po-ico.png | link=EM.Illumina]]</td> | ||
| + | <tr> | ||
| + | </table> | ||
| + | [[Image:Back_icon.png|30px]] '''[[EM.Cube | Back to EM.Cube Main Page]]''' | ||
| + | <br /> | ||
| + | |||
[[EM.Cube]] provides the ultimate solution to all of your electromagnetic modeling needs. Using [[EM.Cube]]'s computational modules, you can solve a wide range of EM analysis and RF design problems. These modules together cover the entire frequency spectrum from DC to light. The following table lists a few examples of electromagnetic modeling problems you can solve with one or more [[EM.Cube]] modules: | [[EM.Cube]] provides the ultimate solution to all of your electromagnetic modeling needs. Using [[EM.Cube]]'s computational modules, you can solve a wide range of EM analysis and RF design problems. These modules together cover the entire frequency spectrum from DC to light. The following table lists a few examples of electromagnetic modeling problems you can solve with one or more [[EM.Cube]] modules: | ||
| − | <table border="1" cellspacing="5" style="width: | + | <table border="1" cellspacing="5" style="width: 1100px;"> |
<tr> | <tr> | ||
| − | <td class="rtecenter" style="width: | + | <td class="rtecenter" style="width: 400px; height: 36px; padding: 10px; background-color: rgb(50, 84, 144);"> |
<span style="font-size: 14px;"><strong><span style="color: rgb(255, 240, 245);">Problem Type / Application</span></strong></span></td> | <span style="font-size: 14px;"><strong><span style="color: rgb(255, 240, 245);">Problem Type / Application</span></strong></span></td> | ||
| − | <td class="rtecenter" style="width: | + | <td class="rtecenter" style="width: 350px; height: 36px; padding: 10px; background-color: rgb(47, 107, 208);"> |
<span style="font-size: 14px;"><strong><span style="color: rgb(255, 240, 245);">Suitable [[EM.Cube]] Module</span></strong></span></td> | <span style="font-size: 14px;"><strong><span style="color: rgb(255, 240, 245);">Suitable [[EM.Cube]] Module</span></strong></span></td> | ||
| − | <td class="rtecenter" style="width: | + | <td class="rtecenter" style="width: 350px; height: 36px; padding: 10px; background-color: rgb(44, 175, 199);"> |
<span style="font-size: 14px;"><strong><span style="color: rgb(255, 240, 245);">Example Projects, Notes or Articles</span></strong></span></td> | <span style="font-size: 14px;"><strong><span style="color: rgb(255, 240, 245);">Example Projects, Notes or Articles</span></strong></span></td> | ||
</tr> | </tr> | ||
| Line 17: | Line 25: | ||
[[image:prop-ico.png | link=EM.Terrano]] </td> | [[image:prop-ico.png | link=EM.Terrano]] </td> | ||
<td style="border-color: rgb(153, 153, 204); background-color: rgb(255, 255, 255);"> | <td style="border-color: rgb(153, 153, 204); background-color: rgb(255, 255, 255);"> | ||
| − | [[image:Terrano | + | [[image:Terrano L5N Fig title.png|60px | link=EM.Terrano Tutorial Lesson 5: Simulating A Dense Urban Canyon Propagation Scene]] [[image:Terrano L7N Fig title.png|60px | link=EM.Terrano Tutorial Lesson 7: Parametric Study Of A Realistic Urban Scene]] [[image:Terrano L8N Fig title.png|60px | link=EM.Terrano Tutorial Lesson 8: Simulating A Communications Link With Directional Antennas]] [[image:Terrano L9N Fig title.png|60px | link=EM.Terrano Tutorial Lesson 9: Modeling A Mobile Communications Link Using Python]] [[image:ART MANH Fig title.png|60px | link=Application Note 2: Modeling Polarimetric Wave Propagation In The Lower Manhattan Scene Using EM.Terrano]] </td> |
</tr> | </tr> | ||
<tr> | <tr> | ||
| Line 111: | Line 119: | ||
Build complex structures using native standard geometric objects or custom expression-based curves & surface and import/export external CAD models</td> | Build complex structures using native standard geometric objects or custom expression-based curves & surface and import/export external CAD models</td> | ||
<td style="border-color: rgb(153, 153, 204); background-color: rgb(255, 255, 255);"> | <td style="border-color: rgb(153, 153, 204); background-color: rgb(255, 255, 255);"> | ||
| − | [[image:cad-ico.png | link=CubeCAD]] </td> | + | [[image:cad-ico.png | link=Building Geometrical Constructions in CubeCAD]] </td> |
<td style="border-color: rgb(153, 153, 204); background-color: rgb(255, 255, 255);"> | <td style="border-color: rgb(153, 153, 204); background-color: rgb(255, 255, 255);"> | ||
[[image:Tempo L11 Fig title.png|60px | link=EM.Tempo Tutorial Lesson 11: Simulating A Monopole Antenna Interacting With A Human Head Model]] [[image:Illumina L4 Fig title.png|60px | link=EM.Illumina Tutorial Lesson 4: Simulating Radiation In The Presence Of Large Metallic Shipboard Platforms]] [[image:ART AIR title.png|60px | link=Application Note 1: Modeling Radar Signature Of Real-Sized Aircraft Using EM.Tempo]] [[image:ART MANH Fig title.png|60px | link=Application Note 2: Modeling Polarimetric Wave Propagation In The Lower Manhattan Scene Using EM.Terrano]] [[image:ART GOLF Fig title.png|60px | link=Application Note 5: Simulating The Performance Of Installed Antennas On Vehicular Platforms Using EM.Tempo]] </td> | [[image:Tempo L11 Fig title.png|60px | link=EM.Tempo Tutorial Lesson 11: Simulating A Monopole Antenna Interacting With A Human Head Model]] [[image:Illumina L4 Fig title.png|60px | link=EM.Illumina Tutorial Lesson 4: Simulating Radiation In The Presence Of Large Metallic Shipboard Platforms]] [[image:ART AIR title.png|60px | link=Application Note 1: Modeling Radar Signature Of Real-Sized Aircraft Using EM.Tempo]] [[image:ART MANH Fig title.png|60px | link=Application Note 2: Modeling Polarimetric Wave Propagation In The Lower Manhattan Scene Using EM.Terrano]] [[image:ART GOLF Fig title.png|60px | link=Application Note 5: Simulating The Performance Of Installed Antennas On Vehicular Platforms Using EM.Tempo]] </td> | ||
| Line 153: | Line 161: | ||
<hr> | <hr> | ||
| − | [[Image:Back_icon.png| | + | [[Image:Back_icon.png|30px]] '''[[Getting_Started_with_EM.Cube| Back to Getting Started with EM.Cube]]''' |
| − | [[Image:Back_icon.png| | + | [[Image:Back_icon.png|30px]] '''[[EM.Cube | Back to EM.Cube Main Page]]''' |
Latest revision as of 22:23, 11 June 2018
EM.Cube provides the ultimate solution to all of your electromagnetic modeling needs. Using EM.Cube's computational modules, you can solve a wide range of EM analysis and RF design problems. These modules together cover the entire frequency spectrum from DC to light. The following table lists a few examples of electromagnetic modeling problems you can solve with one or more EM.Cube modules:
| Problem Type / Application | Suitable EM.Cube Module | Example Projects, Notes or Articles |
| Analyze directional communication links in high multipath urban environments |
|
|
| Model large, finite-sized, antenna arrays on the transmitter and receiver ends |
|
|
| Evaluate platform and feed mechanism effects on the radiation characteristics of antenna systems |
|
|
| Design multilayer planar RF, microwave and millimeter wave circuits |
|
|
| Analyze metallic and dielectric waveguide and resonator structures for microwave and millimeter wave applications |
|
|
| Embed passive and active devices and circuits into your electromagnetic analysis |
|
|
| Model frequency response of multiport structures and generate S-parameter data for equivalent circuit models (for export to RF.Spice A/D) |
|
|
| Model transient propagation of arbitrary waveforms and signals in your circuits |
|
|
| Investigate the interaction of incident plane waves and focused Gaussian beams with complex geometries, biological environments or dispersive materials |
|
|
| Study reflection and transmission properties of periodic surfaces and metamaterial structures |
|
|
| Compute low frequency electric and magnetic fields, capacitance and inductance of lumped circuit devices |
|
|
| Compute quasi-static characteristic impedance and effective permittivity of physical transmission lines |
|
|
| Build complex structures using native standard geometric objects or custom expression-based curves & surface and import/export external CAD models |
|
|
| Compute radar cross section (RCS) of complex targets |
|
|
| Run parametric and random sweeps of design variables with complex interdependencies defined through mathematical functions and/or Python scripts |
|
|
| Optimize your design variables using classical and statistical methods including multi-objective Pareto genetic algorithms |
|
|
| Run lightning fast EM simulations on multicore CPU/GPU platforms using a variety of hardware and software accelerators |
|
|