Changes

Glossary of EM.Cube's Python Functions

14,810 bytes added, 22:22, 11 June 2018
<table><tr><td>[[image:Cube-icon.png | link=Getting_Started_with_EM.Cube]] [[image:cad-ico.png | link=Building_Geometrical_Constructions_in_CubeCAD]] [[image:fdtd-ico.png | link=EM.Tempo]] [[image:prop-ico.png | link=EM.Terrano]] [[image:static-ico.png | link=EM.Ferma]] [[image:planar-ico.png | link=EM.Picasso]] [[image:metal-ico.png | link=EM.Libera]] [[image:po-ico.png | link=EM.Illumina]]</td><tr></table>[[Image:Back_icon.png|30px]] '''[[EM.Cube | Back to EM.Cube Main Page]]'''<br /> == Standard Python Operators == {| class="wikitable"!scope="col"| Syntax!scope="col"| Type!scope="col"| Description|-| style="width:80px;" | -p| style="width:150px;" | Std. Python operator| style="width:270px;" | negative of p|-| style="width:80px;" | p=q| style="width:150px;" | Std. Python operator| style="width:270px;" | p is equal to q|-| style="width:80px;" | p+q| style="width:150px;" | Std. Python operator| style="width:270px;" | sum of p and q|-| style="width:80px;" | p-q| style="width:150px;" | Std. Python operator| style="width:270px;" | difference p and q|-| style="width:80px;" | p*q| style="width:150px;" | Std. Python operator| style="width:270px;" | product of p and q|-| style="width:80px;" | p/q| style="width:150px;" | Std. Python operator| style="width:270px;" | quotient of p over q|-| style="width:80px;" | p**q| style="width:150px;" | Std. Python operator| style="width:270px;" | p to the power of q|-| style="width:80px;" | p%q| style="width:150px;" | Std. Python operator| style="width:270px;" | p modulus q|-| style="width:80px;" | p==q| style="width:150px;" | Std. Python operator| style="width:270px;" | p logically equal to q|-| style="width:80px;" | p>q| style="width:150px;" | Std. Python operator| style="width:270px;" | p is greater than q|-| style="width:80px;" | p>=q| style="width:150px;" | Std. Python operator| style="width:270px;" | p is greater than or equal to q|-| style="width:80px;" | p<q| style="width:150px;" | Std. Python operator| style="width:270px;" | p is less than q|-| style="width:80px;" | p<=q| style="width:150px;" | Std. Python operator| style="width:270px;" | p is less than or equal to q|-| style="width:80px;" | !p| style="width:150px;" | Std. Python operator| style="width:270px;" | Logical not p|-| style="width:80px;" | p and q| style="width:150px;" | Std. Python operator| style="width:270px;" | p Boolean and q|-| style="width:80px;" | p or q| style="width:150px;" | Std. Python operator| style="width:270px;" | p Boolean or q|-|} == Basic Mathematical Python Functions ==
{| class="wikitable"
| style="width:270px;" | Absolute value function
| style="width:270px;" | x if x>0, -x if x<0
|-
| ceiling(x)
| Std. Python function
| Ceiling function
| Nearest integer >= x
|-
| floor(x)
| Std. Python function
| Floor function
| Nearest integer <= x
|-
| pow(x,y)
| Std. Python function
| Factorial
| For for integer values of x: n! = n(n-1)(n-2)...3.2.1
|-
| max(x,y)
| -
|-
| asinhnp.arcsinh(x)
| Std. Python function
| Inverse hyperbolic sine function
| -
|-
| acoshnp.arccosh(x)
| Std. Python function
| Inverse hyperbolic cosine function
| -
|-
| atanhnp.arctanh(x)
| Std. Python function
| Inverse hyperbolic tangent function
| -
|-
| np.floor(x)
| Std. Python function
| Floor function
| nearest integer <= x
|}
| style="width:150px;" | Std. Python function
| style="width:270px;" | Sine and cosine integral functions
| style="width:270px;" | See see [https://en.wikipedia.org/wiki/Trigonometric_integral Trigonometric Integrals on Wikipedia.]
|-
| sp.fresnel(x)
| Std. Python function
| Sine and cosine Fresnel integral functions
| See see [https://en.wikipedia.org/wiki/Fresnel_integral Fresnel Integrals on Wikipedia.]
|-
| sp.ellipe(x)
| Std. Python function
| Elliptic function of the first kind
| See see [https://en.wikipedia.org/wiki/Elliptic_integral Elliptic Integrals on Wikipedia.]
|-
| sp.ellipk(x)
| Std. Python function
| Elliptic function of the second kind
| See see [https://en.wikipedia.org/wiki/Elliptic_integral Elliptic Integrals on Wikipedia.]
|-
| sp.expi(x)
| Std. Python function
| Exponential integral function
| See see [https://en.wikipedia.org/wiki/Exponential_integral Exponential Integrals on Wikipedia.]
|-
| sp.expn(n,x)
| Std. Python function
| Generalized exponential integral function of order n
| See see [https://en.wikipedia.org/wiki/Exponential_integral Exponential Integrals on Wikipedia.]
|-
| sp.erf(x)
| Std. Python function
| Error function
| See see [https://en.wikipedia.org/wiki/Error_function Error Function on Wikipedia.]
|-
| sp.erfc(x)
| Std. Python function
| Complementary error function
| See see [https://en.wikipedia.org/wiki/Error_function Error Function on Wikipedia.]
|-
| sp.gamma(x)
| Std. Python function
| Gamma function
| See see [https://en.wikipedia.org/wiki/Gamma_function Gamma Function on Wikipedia.]
|-
| sp.airy(x)
| Std. Python function
| Airy function of the first (Ai) and second (Bi) kind and their derivatives
| See see [https://en.wikipedia.org/wiki/Airy_function Airy Functions on Wikipedia.]
|-
| sp.j0(x)
| Std. Python function
| Bessel function of the first kind and order 0
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.j1(x)
| Std. Python function
| Bessel function of the first kind and order 1
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.jv(n,x)
| Std. Python function
| Bessel function of the first kind and order n
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.y0(x)
| Std. Python function
| Bessel function of the second kind and order 0
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.y1(x)
| Std. Python function
| Bessel function of the second kind and order 1
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.yv(n,x)
| Std. Python function
| Bessel function of the second kind and order n
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.i0(x)
| Std. Python function
| Modified Bessel function of the first kind and order 0
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.i1(x)
| Std. Python function
| Modified Bessel function of the first kind and order 1
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.iv(n,x)
| Std. Python function
| Modified Bessel function of the first kind and order n
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.k0(x)
| Std. Python function
| Modified Bessel function of the second kind and order 0
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.k1(x)
| Std. Python function
| Modified Bessel function of the second kind and order 1
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.kv(n,x)
| Std. Python function
| Modified Bessel function of the second kind and order n
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.sph_jn(n,x)
| Std. Python function
| Spherical Bessel function of the first kind and order n
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.sph_yn(n,x)
| Std. Python function
| Spherical Bessel function of the second kind and order n
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.sph_in(n,x)
| Std. Python function
| Modified spherical Bessel function of the first kind and order n
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.sph_kn(n,x)
| Std. Python function
| Modified spherical Bessel function of the second kind and order n
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.lpn(n,x)
| Std. Python function
| Legendre function of the first kind and order n
| See see [https://en.wikipedia.org/wiki/Legendre_polynomial Legendre Polynomials on Wikipedia.]
|-
| sp.lqn(n,x)
| Std. Python function
| Legendre function of the second kind and order n
| See see [https://en.wikipedia.org/wiki/Legendre_polynomials Legendre Polynomials on Wikipedia.]
|-
| sp.lpmn(m,n,x)
| Std. Python function
| Associated Legendre function of the first kind and order n
| See see [https://en.wikipedia.org/wiki/Legendre_polynomial Legendre Polynomials on Wikipedia.]
|-
| sp.lqmn(m,n,x)
| Std. Python function
| Associated Legendre function of the second kind and order n
| See see [https://en.wikipedia.org/wiki/Legendre_polynomials Legendre Polynomials on Wikipedia.]
|-
| sp.eval_chebyt(n,x)
| Std. Python function
| Chebyshev polynomial of the first kind and order n
| See see [https://en.wikipedia.org/wiki/Chebyshev_polynomials Chebyshev Polynomials on Wikipedia.]
|-
| sp.eval_chebyu(n,x)
| Std. Python function
| Chebyshev polynomial of the second kind and order n
| See see [https://en.wikipedia.org/wiki/Chebyshev_polynomials Chebyshev Polynomials on Wikipedia.]
|-
| sp.eval_legendre(n,x)
| Std. Python function
| Legendre polynomial of order n
| See see [https://en.wikipedia.org/wiki/Legendre_polynomials Legendre Polynomials on Wikipedia.]
|-
| sp.eval_laguerre(n,x)
| Std. Python function
| Laguerre polynomial of order n
| See see [https://en.wikipedia.org/wiki/Laguerre_polynomials Laguerre Polynomials on Wikipedia.]
|-
| sp.eval_hermite(n,x)
| Std. Python function
| Hermite polynomial of order n
| See see [https://en.wikipedia.org/wiki/Hermite_polynomials Hermite Polynomials on Wikipedia.]
|-
| Math_cesp.mathieu_cem(n,rq,x)
| Std. Python function
| Even periodic (cosine) Mathieu function of order nand its derivative| See see [https://en.wikipedia.org/wiki/Mathieu_function Mathieu Functions on Wikipedia.]
|-
| Math_sesp.mathieu_sem(n,rq,x)
| Std. Python function
| Odd periodic (sine) Mathieu function of order nand its derivative| See see [https://en.wikipedia.org/wiki/Mathieu_function Mathieu Functions on Wikipedia.]
|}
== EM.Cube's Miscellaneous Native Python Functions ==
{| class="wikitable"!scope="col"| Syntax!scope="col"| Type!scope="col"| Description!scopeactivate="col"| Notes|-| style="width:80px;" | rect(x)| style="width:150px;" | EMAG Python function| style="width:270px;" | Rectangle function| style="width:270px;" | 1 if |x|&le;0.5, 0 elsewhere |-| tri(x)| EMAG Python function| Triangle function| 1 if |1-x|&le;1, 0 elsewhere |-| spline2(x)| EMAG Python function| Quadratic spline function| -|-| spline3(x)| EMAG Python function| Cubic spline function| -|-| step(x)| EMAG Python function| Step function| 1 if x>0, 0 if x<0|-| sgn(x)| Std. Python function| Sign function| 1 if x>0, -1 if x<0|-| ramp(x)| EMAG Python function| Ramp function| x if x>0, 0 if x<0|-| sqr_wave(x)| EMAG Python function| Square wave function| -|-| tri_wave(x)| EMAG Python function| Triangle wave function| -|-| sawtooth(x)| EMAG Python function| Sawtooth wave function| -|-| sinc(x)| EMAG Python function| Sinc function| sin(pi*x)/(pi*x)|-| gauss(x,mu,sigma)| EMAG Python function| Gaussian function of mean mu and standard deviation sigma| exp(-0.5*((x-mu)/sigma)**2)/sigma/sqrt(2*pi)|-| msin(x,r)| EMAG Python function| super-quadratic sine function of order r| -|-| mcos(x,r)| EMAG Python function| super-quadratic cosine function of order r| -|-| sigmoid(x,a)| EMAG Python function| Sigmoid function of slope a| 2/(1 + exp(-a*x)) - 1|-| bh_window(x,T)| EMAG Python function| Blackman-Harris window function| -|-| bh_step(x,T)| EMAG Python function| Blackman-Harris step function| -|-| rand(x,y)| EMAG Python function| Random function| -|-| rosen(x,y,a,b)| EMAG Python function| Rosenbrock function| (a-x)**2 + b*(y-x**2)**2|-| mean(x,y)| EMAG Python function| arithmetic mean of x and y| 0.5*(x+y)|-| geo(x,y)| EMAG Python function| geometric mean of x and y| sqrt(x*y)|-| harm(x,y)| EMAG Python function| harmonic mean of x and y| 2/(1/x+1/y)|-| sqr2(x,y)| EMAG Python function| sum of squares of x and y| x**2 + y**2|-| sqr3(x,y,z)| EMAG Python function| sum of squares of x and y and z| x**2 + y**2 + z**3|-| sqrt2(x,y)| EMAG Python function| radius of 2D point (x,y)| sqrt(x**2 + y**2)|-| sqrt3(x,y,z)| EMAG Python function| radius of 3D point (x,y,z)| sqrt(x**2 + y**2 + z**3)|}
== EM.Cube's Design Python Functions ==SYNTAX: activate({{ArgTypeString}} group_node_label)
{| class=EXAMPLE: ''activate("wikitableColor_1")'' DESCRIPTION: Activates a color, material or object group in the current active [[EM.Cube]] module for insertion of new objects.  !scope====add_variable==== SYNTAX: add_variable({{ArgTypeString}} var_name, {{ArgTypeAny}} value) EXAMPLE: ''add_variable("colMyVar"| Syntax,1)'' DESCRIPTION: Adds a new variable to [[EM.Cube]]'s variable list. !scope====array==== SYNTAX: array({{ArgTypeString}} label, {{ArgTypeString}} object, {{ArgTypeAny}} x_count, {{ArgTypeAny}} y_count, {{ArgTypeAny}} z_count, {{ArgTypeAny}} x_spacing, {{ArgTypeAny}} y_spacing, {{ArgTypeAny}} z_spacing) EXAMPLE: ''array("colArray_1"| Type,"Rect_Strip_1",4,4,1,50,50,0)'' DESCRIPTION: Creates or modifies an array object. !scope====array_custom==== SYNTAX: array_custom({{ArgTypeString}} label, {{ArgTypeString}} object, {{ArgTypeAny}} x_count, {{ArgTypeAny}} y_count, {{ArgTypeAny}} z_count, {{ArgTypeAny}} x_spacing, {{ArgTypeAny}} y_spacing, {{ArgTypeAny}} z_spacing, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} rot_x, {{ArgTypeAny}} rot_y, {{ArgTypeAny}} rot_z) EXAMPLE: ''array_custom("colArray_1"| Description,"Rect_Strip_1",4,4,1,50,50,0,100,100,20,0,0,45)'' DESCRIPTION: Creates or modifies an array object and sets its local coordinate system and rotation angles. !scope====background_layer==== SYNTAX: background_layer({{ArgTypeString}} label, {{ArgTypeAny}} eps, {{ArgTypeAny}} sigma, {{ArgTypeAny}} mu, {{ArgTypeAny}} thickness) EXAMPLE: ''background_layer("colMid_Layer"| Notes,3.3,0.001,1,1.5)'' DESCRIPTION: Adds a new substrate layer to [[EM.Picasso]]'s background layer stackup.|-| style="width===base_point_group==== SYNTAX:100px;base_point_group({{ArgTypeString}} label) EXAMPLE: ''base_point_set(" | microstrip_designBP_Set_1")'' DESCRIPTION: Creates a base point set in [[EM.Terrano]]. If the base point set group 'label' already exists, the group is activated. ====bh_step==== SYNTAX: bh_step(z0{{ArgTypeReal}} x,er{{ArgTypeReal}} T)| styleEXAMPLE: ''bh_step(0.5,1)'' DESCRIPTION: Computes and returns the Blackman-Harris step function. ="width===bh_window==== SYNTAX:150px;" | EMAG Python bh_window({{ArgTypeReal}} x, {{ArgTypeReal}} T) EXAMPLE: ''bh_window(0.5,1)'' DESCRIPTION: Computes and returns the Blackman-Harris window function. | style="width===box==== SYNTAX:250px;box({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} base_x, {{ArgTypeAny}} base_y, {{ArgTypeAny}} height[, {{ArgTypeAny}} cap_top, {{ArgTypeAny}} cap_bottom]) EXAMPLE: ''box(" | Returns Box_1",0,0,0,50,50,100)'' DESCRIPTION: Draws a box object in the widthproject workspace under the currently activated material group node, or modifies the box named 'label' if it already exists. ====capacitance==== SYNTAX: capacitance({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2, {{ArgTypeAny}} x3, {{ArgTypeAny}} y3, {{ArgTypeAny}} z3, {{ArgTypeAny}} x4, {{ArgTypeAny}} y4, {{ArgTypeAny}} z4) EXAMPLE: ''capacitance("FI_1",-to10,-height ratio of 10,5,10,10,10,0,0,-10,0,0,10)'' DESCRIPTION: Creates a microstrip transmission line capacitance integral observable in [[EM.Ferma]]. If the observable 'label' already exists, its properties are modified. | style="width===capacitor==== SYNTAX:250px;capacitor({{ArgTypeString}} label, {{ArgTypeAny}} line_object, {{ArgTypeAny}} offset, {{ArgTypeAny}} capacitance_pF) EXAMPLE: ''capacitor(" | z0Cap_1","Line_1",25,10)'' DESCRIPTION: characteristic impedance Creates a capacitor in Ohms[[EM.Tempo]]. If the capacitor 'label' already exists, erits properties are modified. ====charge_group==== SYNTAX: substrate permittivitycharge_group({{ArgTypeString}} label, {{ArgTypeAny}} density)|EXAMPLE: ''charge_group("Charge_1",-1e-5)'' DESCRIPTION: Creates a volume charge source group in [[EM.Ferma]]. If the charge group 'label' already exists, the group is activated. | style="width===circ_strip==== SYNTAX:100px;" | microstrip_z0circ_strip(w{{ArgTypeString}} label,h{{ArgTypeAny}} x0,er{{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} inner_radius, {{ArgTypeAny}} outer_radius[, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle])| style=EXAMPLE: ''circ_strip("widthcs_1",0,0,0,50,0)'' DESCRIPTION:150px;Draws a circle strip object in the project workspace under the currently activated material group node, or modifies the circle strip object named 'label' if it already exists. The arguments start_angle and end_angle are in degrees and specify a sweep about the circle strip's azimuth axis. ====circle==== SYNTAX: circle({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle) EXAMPLE: ''circle(" | EMAG Python functionpyramid_1",0,0,0,10,10,100)'' DESCRIPTION: Draws a circular curve object in the project workspace under the currently activated material group node, or modifies the circle named 'label' if it already exists. The parameters start_angle and end_angle are in degrees. | style====clone==== SYNTAX: clone({{ArgTypeString}} label, {{ArgTypeString}} object, {{ArgTypeReal}} x0, {{ArgTypeReal}} y0, {{ArgTypeReal}} z0) EXAMPLE: ''clone("widthNewObj","MyObj",10,10,0)'' DESCRIPTION:250px;Creates a copy of the specified object and repositions it at the given coordinates.  ====close_curve==== SYNTAX: close_curve({{ArgTypeString}} label, {{ArgTypeString}} close_state) EXAMPLE: ''close_curve(" | Returns Curve_1",1)'' DESCRIPTION: Sets the characteristic impedance open/close state of a microstrip polyline or NURBS curve. Use 0 for open curve and 1 for close curve. ====coaxial_design==== SYNTAX: coaxial_design({{ArgTypeReal}} z0, {{ArgTypeReal}} er) EXAMPLE: ''coaxial_design(50,2.2)'' DESCRIPTION: Computes and returns the ratio of the radius of the outer conductor to the radius of the inner conductor of a coaxial transmission line of characteristic impedance z0 (in Ohms ) with core relative permittivity er. | style="width===coaxial_src==== SYNTAX:250px;coaxial_src({{ArgTypeString}} label, {{ArgTypeAny}} cylinder_object, {{ArgTypeAny}} outer_radius, {{ArgTypeAny}} edge[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance]) EXAMPLE: ''coaxial_src(" | wCOAX_1","Cyl_1",1.5,"+z")'' DESCRIPTION: microstrip widthCreates a coaxial port source in [[EM.Tempo]]. If the coaxial port 'label' already exists, hits properties are modified. ====color_group==== SYNTAX: substrate heightcolor_group({{ArgTypeString}} label) EXAMPLE: ''color_group("Color_1")'' DESCRIPTION: Creates a color group in CubeCAD module. If the color group 'label' already exists, erthe group is activated. ====conduction_current_integral==== SYNTAX: substrate permittivityconduction_current_integral({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2)|EXAMPLE: ''conduction_current_integral("FI_1",-10,-10,0,10,10,0)'' DESCRIPTION: Creates a conduction current integral observable in [[EM.Ferma]]. If the observable 'label' already exists, its properties are modified. | style="width===conductive_sheet_group==== SYNTAX:100px;" | microstrip_eps_effconductive_sheet_group(w{{ArgTypeString}} label,h{{ArgTypeAny}} sigma,er{{ArgTypeAny}} thickness)| style="widthEXAMPLE:150px;''conductive_sheet_group(" | EMAG Python functionCond_1",100, 0.01)'' DESCRIPTION: Creates a conductive sheet group in [[EM.Picasso]]. If the conductive sheet group 'label' already exists, the group is activated. | style="width===cone==== SYNTAX:250px;cone({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} base_radius, {{ArgTypeAny}} height[, {{ArgTypeAny}} top_radius, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle, {{ArgTypeAny}} cap_top, {{ArgTypeAny}} cap_bottom]) EXAMPLE: ''cone(" | Returns Cone_1",0,0,0,30,40,20,0,180)'' DESCRIPTION: Draws a cone object in the effective permittivity of project workspace under the currently activated material group node, or modifies the cone named 'label' if it already exists. The arguments start_angle and end_angle are in degrees and specify a microstrip transmission line sweep about the cone's azimuth axis. | style="width===consolidate==== SYNTAX:250px;consolidate({{ArgTypeString}} object) EXAMPLE: ''consolidate(" | wPoly_1")'' DESCRIPTION: microstrip widthConsolidates a specified object. ====cpw_design_s==== SYNTAX: cpw_design_s({{ArgTypeReal}} z0, {{ArgTypeReal}} w, {{ArgTypeReal}} h: substrate height, {{ArgTypeReal}} er) EXAMPLE: ''cpw_design_s(50,2,0.5,2.2)'' DESCRIPTION: Computes and returns the center strip width (in meters) of a CPW transmission line of characteristic impedance z0 with slot width w, substrate height h and substrate relative permittivityer.|-| style="width===cpw_design_w==== SYNTAX:100px;" | microstrip_lambda_gcpw_design_w(w{{ArgTypeReal}} z0,{{ArgTypeReal}} s, {{ArgTypeReal}} h,{{ArgTypeReal}} er) EXAMPLE: ''cpw_design_w(50,freq_hertz1,0.5,2.2)''| style="DESCRIPTION: Computes and returns the slot width(in meters) of a CPW transmission line of characteristic impedance z0 with center strip width s, substrate height h and substrate relative permittivity er. ====cpw_src==== SYNTAX:150px;cpw_src({{ArgTypeString}} label, {{ArgTypeAny}} rect_object, {{ArgTypeAny}} spacing, {{ArgTypeAny}} edge[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance]) EXAMPLE: ''cpw_src(" | EMAG Python functionCPW_1","Rect_1",1.5,"+x")'' DESCRIPTION: Creates a CPW port source in [[EM.Tempo]]. If the CPW port 'label' already exists, its properties are modified. | style="width===cubecad_mesh_settings==== SYNTAX:250px;" | Returns cubecad_mesh_settings({{ArgTypeAny}} edge_length, {{ArgTypeAny}} angle_tol) EXAMPLE: ''cubecad_mesh_settings(5,10)'' DESCRIPTION: Sets the guide wavelength parameters of CubeCAD's mesh generator. ====current_dist==== SYNTAX: current_dist({{ArgTypeString}} label) EXAMPLE: ''current_dist("CD_1")'' DESCRIPTION: Creates a microstrip transmission line current distribution observable. If the observable 'label' already exists, its properties are modified. ====current_integral==== SYNTAX: current_integral({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2) EXAMPLE: ''current_integral("FI_1",-10,-10,0,10,10,0)'' DESCRIPTION: Creates a current integral observable in meters[[EM.Ferma]]. If the observable 'label' already exists, its properties are modified. | style====cylinder==== SYNTAX: cylinder({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius, {{ArgTypeAny}} height[, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle, {{ArgTypeAny}} cap_top, {{ArgTypeAny}} cap_bottom]) EXAMPLE: ''cylinder("widthCylinder_1",0,0,0,10,100)'' DESCRIPTION:250px;Draws a cylinder object in the project workspace under the currently activated material group node, or modifies the cylinder named 'label' if it already exists. The arguments start_angle and end_angle are in degrees and specify a sweep about the cylinder's azimuth axis. ====delete==== SYNTAX: delete({{ArgTypeString}} node_name) EXAMPLE: ''delete(" | wBox_1")'' DESCRIPTION: microstrip widthDeletes a node name from the navigation tree. The node can be any geometric object, hsource, observable or material group.  ====delete_background_layer==== SYNTAX: delete_background_layer({{ArgTypeString}} label) EXAMPLE: ''delete_background_layer("Mid_Layer")'' DESCRIPTION: Deletes a finite-thickness substrate heightlayer from [[EM.Picasso]]'s background layer stackup. ====dielectric_group==== SYNTAX: dielectric_group({{ArgTypeString}} label, er{{ArgTypeAny}} eps, {{ArgTypeAny}} sigma, {{ArgTypeAny}} mu, {{ArgTypeAny}} rho) EXAMPLE: substrate permittivity''dielectric_group("Dielectric_1", freq_hertz"my_eps",0,1,0)'' DESCRIPTION: frequency Creates a dielectric material group in Hzthe current module with the specified material properties. If the dielectric group 'label' already exists, the group is activated.|-| style====diode==== SYNTAX: diode({{ArgTypeString}} label, {{ArgTypeAny}} line_object, {{ArgTypeAny}} polarity, {{ArgTypeAny}} is_fA, {{ArgTypeAny}} temperature_K, {{ArgTypeAny}} ideality_factor) EXAMPLE: ''diode("widthDiode_1","Line_1",25,0,10,300,1)'' DESCRIPTION:100px;Creates a diode in [[EM.Tempo]]. If the diode 'label' already exists, its properties are modified. ====distributed_src==== SYNTAX: distributed_src({{ArgTypeString}} label, {{ArgTypeAny}} rect_object, {{ArgTypeAny}} field_dir, {{ArgTypeAny}} profile[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance]) EXAMPLE: ''distributed_src(" | cpw_design_wDS_1","Rect_1","+y","uniform")'' DESCRIPTION: Creates a distributed source in [[EM.Tempo]]. If the distributed source 'label' already exists, its properties are modified. ====ellipse_strip==== SYNTAX: ellipse_strip({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0,{{ArgTypeAny}} radius_x, {{ArgTypeAny}} radius_y[, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle]) EXAMPLE: ''ellipse_strip("es_1",0,0,0,50,0)'' DESCRIPTION: Draws a ellipse strip object in the project workspace under the currently activated material group node, or modifies the ellipse strip object named 'label' if it already exists. The arguments start_angle and end_angle are in degrees and specify a sweep about the ellipse strip'sazimuth axis. ====ellipsoid==== SYNTAX: ellipsoid({{ArgTypeString}} label,h{{ArgTypeAny}} x0,er{{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius_x, {{ArgTypeAny}} radius_y, {{ArgTypeAny}} radius_z[, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle])| styleEXAMPLE: ''ellipsoid("Ellipsoid_1",0,0,0,100,100,50,0,360)'' DESCRIPTION: Draws an ellipsoid object in the project workspace under the currently activated material group node, or modifies the ellipsoid named 'label' if it already exists. The arguments start_angle and end_angle are in degrees and specify a sweep about the ellipsoid's azimuth axis. ====emferma_engine_settings==== SYNTAX: emferma_engine_settings({{ArgTypeString}} matrix_solver, {{ArgTypeAny}} error_tol, {{ArgTypeAny}} max_iterations) EXAMPLE: ''emferma_engine_settings("widthbicg-stab",1e-3,100)'' DESCRIPTION:150px;Sets the parameters of [[EM.Ferma]]'s electrostatic and magnetostatic simulation engines. ====emferma_mesh_settings==== SYNTAX: emferma_mesh_settings({{ArgTypeAny}} cell_size_x, {{ArgTypeAny}} cell_size_y, {{ArgTypeAny}} cell_size_z) EXAMPLE: ''emferma_mesh_settings(0.5,0.5,0.5)'' DESCRIPTION: Sets the parameters of [[EM.Ferma]]'s fixed-cell mesh generator. ====emillumina_engine_settings==== SYNTAX: emillumina_engine_settings({{ArgTypeString}} engine, {{ArgTypeAny}} is_fixed_iteration, {{ArgTypeAny}} error_tol, {{ArgTypeAny}} max_iterations) EXAMPLE: ''emillumina_engine_settings(" | EMAG Python functionipo",0,1e-2,20)'' DESCRIPTION: Sets the parameters of [[EM.Illumina]]'s Physical Optics simulation engine. | style====emillumina_mesh_settings==== SYNTAX: emillumina_mesh_settings({{ArgTypeAny}} cells_per_lambda) EXAMPLE: ''emillumina_mesh_settings(30)'' DESCRIPTION: Sets the parameters of [[EM.Illumina]]'s mesh generator. ====emlibera_engine_settings_smom==== SYNTAX: emlibera_engine_settings_smom({{ArgTypeString}} matrix_solver, {{ArgTypeAny}} error_tol, {{ArgTypeAny}} max_iterations, {{ArgTypeAny}} ncpus, {{ArgTypeString}} formulation, {{ArgTypeAny}} alpha) EXAMPLE: ''emlibera_engine_settings_smom("widthbicg",1e-3,1000,4,"efie",0.4)'' DESCRIPTION:250px;Sets the parameters of [[EM.Libera]]'s surface MoM simulation engines. ====emlibera_engine_settings_wmom==== SYNTAX: emlibera_engine_settings_wmom({{ArgTypeString}} matrix_solver, {{ArgTypeAny}} error_tol, {{ArgTypeAny}} max_iterations) EXAMPLE: ''emlibera_engine_settings_wmom(" | Returns bicg",1e-3,1000)'' DESCRIPTION: Sets the slot width parameters of a coplanar waveguide [[EM.Libera]]'s wire MoM simulation engines. ====emlibera_mesh_settings==== SYNTAX: emlibera_mesh_settings(CPW{{ArgTypeAny}} cells_per_lambda) transmission line | styleEXAMPLE: ''emlibera_mesh_settings(30)'' DESCRIPTION: Sets the parameters of [[EM.Libera]]'s mesh generator. ====empicasso_engine_settings==== SYNTAX: empicasso_engine_settings({{ArgTypeString}} matrix_solver, {{ArgTypeAny}} error_tol, {{ArgTypeAny}} max_iterations) EXAMPLE: ''empicasso_engine_settings("widthbicg",1e-3,1000)'' DESCRIPTION:250px;Sets the parameters of [[EM.Picasso]]'s planar MoM simulation engine. ====empicasso_mesh_settings==== SYNTAX: empicasso_mesh_settings({{ArgTypeAny}} cells_per_lambda) EXAMPLE: ''empicasso_mesh_settings(30)'' DESCRIPTION: Sets the parameters of [[EM.Picasso]]'s planar hybrid mesh generator. ====emtempo_engine_settings==== SYNTAX: emtempo_engine_settings({{ArgTypeString}} engine, {{ArgTypeAny}} power_threshhold, {{ArgTypeAny}} max_timesteps) EXAMPLE: ''emtempo_engine_settings(" | z0single-precision",-50,20000)'' DESCRIPTION: characteristic impedance in OhmsSets the parameters of [[EM.Tempo]]'s FDTD simulation engine. ====emtempo_mesh_settings==== SYNTAX: emtempo_mesh_settings({{ArgTypeAny}} cells_per_lambda, {{ArgTypeAny}} ratio_contour, {{ArgTypeAny}} ratio_thin, {{ArgTypeAny}} ratio_abs) EXAMPLE: ''emtempo_mesh_settings(30,0.1,0.1,0.02)'' DESCRIPTION: Sets the parameters of [[EM.Tempo]]'sadaptive mesh generator. ====emterrano_engine_settings==== SYNTAX: center strip width emterrano_engine_settings(or slot spacing{{ArgTypeAny}} bounce_count, {{ArgTypeAny}} do_edge_diffraction, {{ArgTypeAny}} angular_resolution, {{ArgTypeAny}} ray_threshhold) EXAMPLE: ''emterrano_engine_settings(5, h1,1,-100)'' DESCRIPTION: substrate heightSets the parameters of [[EM.Terrano]]'s SBR simulation engine. ====emterrano_mesh_settings==== SYNTAX: emterrano_mesh_settings({{ArgTypeAny}} edge_length, er{{ArgTypeAny}} angle_tol) EXAMPLE: substrate permittivity''emterrano_mesh_settings(5,10)'' DESCRIPTION: Sets the parameters of [[EM.Terrano]]'s facet mesh generator.|-| style="width===energy_electric==== SYNTAX:100px;energy_electric({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2) EXAMPLE: ''energy_electric(" | cpw_design_sFI_1",-10,-10,-10,10,10,10)'' DESCRIPTION: Creates an electric energy integral observable in [[EM.Ferma]]. If the observable 'label' already exists, its properties are modified. ====energy_magnetic==== SYNTAX: energy_magnetic(z0{{ArgTypeString}} label,w{{ArgTypeAny}} x1,h{{ArgTypeAny}} y1,er{{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2)| styleEXAMPLE: ''energy_magnetic("FI_1",-10,-10,-10,10,10,10)'' DESCRIPTION: Creates a magnetic energy integral observable in [[EM.Ferma]]. If the observable 'label' already exists, its properties are modified. ====explode==== SYNTAX: explode({{ArgTypeString}} object) EXAMPLE: ''explode("widthMyArray")'' DESCRIPTION:150px;Explodes an object into its basic primitives. ====export_dxf==== SYNTAX: export_dxf({{ArgTypeString}} file_name) EXAMPLE: ''export_dxf(" | EMAG Python functionMyDXFModel.DXF")'' DESCRIPTION: Exports the physical structure of the project workspacean to a DXF model file. If the file path is not specified, the current project folder is assumed as the path. | style====export_py==== SYNTAX: export_py({{ArgTypeString}} file_name) EXAMPLE: ''export_py("widthMyPYModel.PY")'' DESCRIPTION:250pxExports the physical structure of the project workspace or the current object selection to a Python geometry file. The default path is the Python subfolder under "Documents &rarr;EMAG" | Returns the center strip width . ====export_stl==== SYNTAX: export_stl(or slot spacing{{ArgTypeString}} file_name)  EXAMPLE: ''export_stl("MySTLModel.STL")'' DESCRIPTION: Exports the physical structure of a coplanar waveguide the project workspacean to an STL model file. If the file path is not specified, the current project folder is assumed as the path. ====extrude==== SYNTAX: extrude(CPW{{ArgTypeString}} label, {{ArgTypeString}} object, {{ArgTypeAny}} extrude_height, {{ArgTypeAny}} cap_ends) transmission line  EXAMPLE: ''extrude("Extrude_1","Rect_Strip1",50)'' DESCRIPTION: Creates or modifies an extrusion object from a specified object by the specified height. If modifying an existing extrusion object, the pre-existing primitive is used. This command can only extrude objects that have a single face and will extrude along the face's normal. | style="width===farfield==== SYNTAX:250px;farfield({{ArgTypeString}} label, {{ArgTypeAny}} theta_incr, {{ArgTypeAny}} phi_incr) EXAMPLE: ''farfield(" | FF_1",1,1)'' DESCRIPTION: Creates a far-field radiation pattern observable. If the observable 'label' already exists, its properties are modified. ====field_probe==== SYNTAX: field_probe({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0) EXAMPLE: characteristic impedance in Ohms''field_probe("FS_1", w0,0,50)'' DESCRIPTION: slot widthCreates a temporal field probe observable in [[EM.Tempo]] or [[EM.Ferma]]. If the observable 'label' already exists, hits properties are modified. ====field_sensor==== SYNTAX: substrate heightfield_sensor({{ArgTypeString}} label, er{{ArgTypeAny}} dir_coordinate, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} xSize, {{ArgTypeAny}} ySize, {{ArgTypeAny}} zSize, {{ArgTypeAny}} xSamples, {{ArgTypeAny}} ySamples, {{ArgTypeAny}} zSamples) EXAMPLE: substrate permittivity''field_sensor("FS_1","z",0,0,0,100,100,0,25,25,0)''|DESCRIPTION: Creates a near-field sensor observable. If the observable 'label' already exists, its properties are modified. | style="width===field_sensor_grid==== SYNTAX:100px;" | coaxial_designfield_sensor_grid({{ArgTypeString}} label, {{ArgTypeAny}} dir_coordinate, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0) EXAMPLE: ''field_sensor_grid("FS_1",er"z",0,0,0)'' DESCRIPTION: Creates a near-field sensor observable in [[EM.Tempo]] or [[EM.Ferma]]. If the observable 'label' already exists, its properties are modified. | style="width===fill_curve==== SYNTAX:150px;fill_curve({{ArgTypeString}} object) EXAMPLE: ''fill_curve(" | EMAG Python functionCurve_1")'' DESCRIPTION: Fill the interior of the specified closed curve object. | style="width===fillet==== fillet({{ArgTypeString}} object, {{ArgTypeAny}} radius) EXAMPLE:250px;''fillet(" | Returns Rect_1",5)'' DESCRIPTION: Fillets the ratio of radius corners of the outer conductor to specified surface or curve object by the specified radius of the inner condutcor of a coaxial transmission line . | style="width===flux_electric==== SYNTAX:250px;flux_electric({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2) EXAMPLE: ''flux_electric(" | z0FI_1",-10,-10,5,10,10,10)'' DESCRIPTION: characteristic impedance Creates an electric flux integral observable in Ohms[[EM.Ferma]]. If the observable 'label' already exists, erits properties are modified. ====flux_magnetic==== SYNTAX: core permittivityflux_magnetic({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2)|EXAMPLE: ''flux_magnetic("FI_1",0,0,-10,10,0,10)'' DESCRIPTION: Creates a magnetic flux integral observable in [[EM.Ferma]]. If the observable 'label' already exists, its properties are modified. | style="width===fractal_tree==== SYNTAX:100px;" | waveguide_designfractal_tree(er{{ArgTypeString}} label,freq_hertz{{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} key_type, {{ArgTypeAny}} key_size, {{ArgTypeAny}} n_level, {{ArgTypeAny}} sep_angle, {{ArgTypeAny}} n_gen, {{ArgTypeAny}} prune_factor, {{ArgTypeAny}} thickness, {{ArgTypeAny}} thick_factor)| style=EXAMPLE: ''fractal_tree("widthFractal_1",0,0,0,"line",10,3,30,3,0,0,0)'' DESCRIPTION:150px;Generates a fractal tree in the project workspace under the currently activated material group node, or modifies the fractal tree named 'label' if it already exists. ====freeze==== SYNTAX: freeze({{ArgTypeString}} object, {{ArgTypeReal}} freeze_state) EXAMPLE: ''freeze(" | EMAG Python MyObj",1)'' DESCRIPTION: Sets the freeze state of an object (0/1).  ====gauss==== SYNTAX: gauss({{ArgTypeReal}} x, ArgTypeReal}} mu, ArgTypeReal}} sigma) EXAMPLE: ''gauss(0.5,0,1)'' DESCRIPTION: Computes and returns the Gaussian functionof mean mu and standard deviation sigma: exp(-0.5*((x-mu)/sigma)**2)/sigma/sqrt(2*pi). | style====gauss_beam==== SYNTAX: gauss_beam({{ArgTypeString}} label, {{ArgTypeAny}} theta, {{ArgTypeAny}} phi, {{ArgTypeAny}} polarization, {{ArgTypeAny}} focus_x, {{ArgTypeAny}} focus_y, {{ArgTypeAny}} focus_z, {{ArgTypeAny}} radius, {{ArgTypeAny}} p_mode, {{ArgTypeAny}} q_mode) EXAMPLE: ''gauss_beam("widthPW_1",180,0,"tm",0,0,0,20,0,0)'' DESCRIPTION:250px;Creates a Gaussian beam source in [[EM.Tempo]]. If the Gaussian beam source 'label' already exists, its properties are modified. ====generate_input_files==== SYNTAX: generate_input_files() EXAMPLE: ''generate_input_files()'' DESCRIPTION: Generates all the input files for the simulation engine of the current module without running a simulation. ====geo==== SYNTAX: geo({{ArgTypeReal}} x, {{ArgTypeReal}} y) EXAMPLE: ''geo(1,2)'' DESCRIPTION: Computes and returns the geometric mean of x and y: sqrt(x*y). ====get_area==== SYNTAX: get_area({{ArgTypeString}} object) EXAMPLE: ''get_area(" | ellipse_1")'' DESCRIPTION: Returns the minimum larger dimension in meter area of a surface object or the cross section total surface area of a hollow rectangular waveguide above cutoff solid object. | style====get_axis==== SYNTAX: get_axis({{ArgTypeString}} object, {{ArgTypeString}} axis, {{ArgTypeString}} coordinate) EXAMPLE: ''get_axis("widthpyramid_1","x","y")'' DESCRIPTION:250px;Returns the specified coordinate of the unit vector along the specified local axis of an object. ====get_domain_extent==== SYNTAX: get_domain_extent({{ArgTypeString}} coordinate) EXAMPLE: ''get_domain_extent(" | erx")'' DESCRIPTION: filling permittivityReturns the size of the computational domain along the specified direction. ====get_extent==== SYNTAX: get_extent({{ArgTypeString}} object, freq_hertz{{ArgTypeString}} coordinate) EXAMPLE: frequency in Hz''get_extent("pyramid_1","x")'' DESCRIPTION: Returns the size of the bounding box of an object along the specified direction.|-| style="width===get_lcs==== SYNTAX:100px;get_lcs({{ArgTypeString}} object, {{ArgTypeString}} coordinate) EXAMPLE: ''get_lcs(" | horn_design_apyramid_1","x")'' DESCRIPTION: Returns the specified coordinate of the LCS of an object. ====get_lcs_offset==== SYNTAX: get_lcs_offset(D0_dB{{ArgTypeString}} object,a_lambda{{ArgTypeAny}} x_off,b_lambda{{ArgTypeAny}} y_off, {{ArgTypeAny}} z_off, {{ArgTypeString}} coordinate)| styleEXAMPLE: ''get_lcs_offset("box_1",50,50,0,"x")'' DESCRIPTION: Returns the specified coordinate of the LCS of an object after being translated by the specified offset values along the three principal axes. ====get_length==== SYNTAX: get_length({{ArgTypeString}} object) EXAMPLE: ''get_length("widthhelix_1")'' DESCRIPTION:150px;Returns the length of a curve object. ====get_rot==== SYNTAX: get_rot({{ArgTypeString}} object, {{ArgTypeString}} coordinate) EXAMPLE: ''get_rot(" | EMAG Python functionpyramid_1","x")'' DESCRIPTION: Returns the specified rotation angle of an object. | style====get_standard_output==== SYNTAX: get_standard_output({{ArgTypeString}} output_name)  EXAMPLE: ''get_standard_output("widthS11M")'' DESCRIPTION:250px;Returns the computed value of the specified standard output parameter at the end of a simulation. ====get_vertex==== SYNTAX: get_vertex({{ArgTypeString}} object, {{ArgTypeAny}} node_index, {{ArgTypeString}} coordinate) EXAMPLE: ''get_vertex(" | pyramid_1",0,"x")'' DESCRIPTION: Returns the wavelength-normalized larger dimension specified coordinate of the aperture specified vertex of the bounding box of an optimal pyramidal horn antenna object. The vertices are specified by node indices. The lower front left corner has an index of 0, while the upper back right corner has an index of 7. The indices are numbered counterclockwise, with the bottom face first and top face next.  | style="width===get_volume==== SYNTAX:250px;get_volume({{ArgTypeString}} object) EXAMPLE: ''get_volume(" | D0_dBpyramid_1")'' DESCRIPTION: directivity dReturns the volume of a solid object. ====global_ground==== SYNTAX: global_ground({{ArgTypeAny}} ground_on, a_lambda{{ArgTypeAny}} eps, {{ArgTypeAny}} sigma) EXAMPLE: wavelength-normalized larger dimension of ''global_ground(1,3.3,0.001)'' DESCRIPTION: Set the feed waveguidestate of [[EM.Terrano]]'s global ground and its material properties. A zero value for ground_on means to no global ground assumed at Z = 0.  ====group==== SYNTAX: group({{ArgTypeString}} label, b_lambda{{ArgTypeString}} object_1, {{ArgTypeString}} object_2, ...) EXAMPLE: wavelength-normalized smaller dimension ''group("Composite_1","Box_1","Box_2","Box_3")'' DESCRIPTION: Groups a number of objects into a composite object with the feed waveguide given label.|-| style====harm==== SYNTAX: harm({{ArgTypeReal}} x, {{ArgTypeReal}} y) EXAMPLE: ''harm(1,2)'' DESCRIPTION: Computes and returns the harmonic mean of x and y: 2/(1/x+1/y). ====helix==== SYNTAX: helix({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius_inner, {{ArgTypeAny}} radius_outer, {{ArgTypeAny}} nturns, {{ArgTypeAny}} helix_dir) EXAMPLE: ''helix("widthHelix_1",0,0,0,15,15,10,0)'' DESCRIPTION:100px;Draws a helical curve in the project workspace under the currently activated material group node, or modifies the helix named 'label' if it already exists. The parameter " | horn_design_bradius_inner" specifies the helix's radius at the beginning of the helix, and radius_outer specifies the radius at the end of the helix. If the Boolean parameter "helixl_dir" is 1, the helical curve will be drawn counter-clockwise. ====horn_design_a==== SYNTAX: horn_design_a({{ArgTypeReal}} D0_dB,{{ArgTypeReal}} a_lambda,{{ArgTypeReal}} b_lambda)| style="widthEXAMPLE:150px;" | EMAG Python function''horn_design_a(15,0.4,0.3)''| style="widthDESCRIPTION:250px;" | Returns Computes and returns the wavelength-normalized smaller larger dimension of the aperture of an optimal pyramidal horn antenna | style="width:250px;" | with directivity D0_dB: directivity d, a_lambda: and wavelength-normalized larger dimension of the feed waveguidedimensions a_lambda and b_lambda. ====horn_design_b==== SYNTAX: horn_design_b({{ArgTypeReal}} D0_dB, {{ArgTypeReal}} a_lambda, {{ArgTypeReal}} b_lambda) EXAMPLE: ''horn_design_b(15,0.4,0.3)'' DESCRIPTION: Computes and returns the wavelength-normalized smaller dimension of the aperture of an optimal pyramidal horn antenna with directivity D0_dB and wavelength-normalized feed waveguide dimensions a_lambda and b_lambda.|-| style="width===horn_design_l==== SYNTAX:100px;" | horn_design_l({{ArgTypeReal}} D0_dB,{{ArgTypeReal}} a_lambda,{{ArgTypeReal}} b_lambda)| style="widthEXAMPLE:150px;" | EMAG Python function''horn_design_l(15,0.4,0.3)''| style="widthDESCRIPTION:250px;" | Returns Computes and returns the wavelength-normalized length of an optimal pyramidal horn antenna with directivity D0_dB and wavelength-normalized feed waveguide dimensions a_lambda and b_lambda. | style====huygens_src==== SYNTAX: huygens_src({{ArgTypeString}} label, {{ArgTypeAny}} filename[, {{ArgTypeAny}} set_lcs, {{ArgTypeAny}} polarization, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} x_rot, {{ArgTypeAny}} y_rot, {{ArgTypeAny}} z_rot]) EXAMPLE: ''huygens_src("widthHS_1","Huygens_1.HUY",1,100,100,0,0,0,0)'' DESCRIPTION:250px;Creates a Huygens source. If the Huygens source 'label' already exists, its properties are modified. ====huygens_surface==== SYNTAX: huygens_surface({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2, {{ArgTypeAny}} xSamples, {{ArgTypeAny}} ySamples, {{ArgTypeAny}} zSamples) EXAMPLE: ''huygens_surface(" | D0_dBHS_1",-10,-10,-10,10,10,10,40,40,40)'' DESCRIPTION: directivity dCreates a Huygens surface observable. If the observable 'label' already exists, a_lambdaits properties are modified. ====huygens_surface_grid==== SYNTAX: wavelengthhuygens_surface_grid({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2) EXAMPLE: ''huygens_surface_grid("HS_1",-normalized larger dimension 10,-10,-10,10,10,10)'' DESCRIPTION: Creates a Huygens surface observable in [[EM.Tempo]]. If the observable 'label' already exists, its properties are modified. ====hyperbola==== SYNTAX: hyperbola({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} diam_x, {{ArgTypeAny}} diam_y, {{ArgTypeAny}} axial_length, {{ArgTypeAny}} half_only) EXAMPLE: ''hyperbola("Hyperbola _1",0,0,0,50,40,20,0)'' DESCRIPTION: Draws a hyperbola object in the project workspace under the currently activated material group node, or modifies the hyperbola named 'label' if it already exists. If the Boolean parameter "half_only" is 1, only half of the feed waveguidehyperbola will be drawn.  ====impedance_surface_group==== SYNTAX: impedance_surface_group({{ArgTypeString}} label, b_lambda{{ArgTypeAny}} z_real, {{ArgTypeAny}} z_imag) EXAMPLE: wavelength''impedance_surface_group("IMP_1",100,-normalized smaller dimension of 100)'' DESCRIPTION: Creates a impedance_surface group in [[EM.Illumina]]. If the feed waveguide impedance surface group 'label' already exists, the group is activated.|====impenetrable_surface_group==== SYNTAX: impenetrable_surface_group({{ArgTypeString}} label, {{ArgTypeAny}} eps, {{ArgTypeAny}} sigma) EXAMPLE: ''impenetrable_surface_group("Impenet_1",2.2,0.0001)'' DESCRIPTION: Creates an impenetrable surface group in [[EM.Terrano]]. If the impenetrable surface group 'label' already exists, the group is activated. ====import_dxf==== SYNTAX: import_dxf({{ArgTypeString}} file_name) EXAMPLE: ''import_dxf("MyDXFModel.DXF")'' DESCRIPTION: Imports an external DXF model file to the project workspace. If the file path is not specified, the current project folder is assumed as the path. ====import_igs==== SYNTAX: import_igs({{ArgTypeString}} file_name) EXAMPLE: ''import_igs("MyIGSModel.IGS")'' DESCRIPTION: Imports an external IGES model file to the project workspace. If the file path is not specified, the current project folder is assumed as the path. ====import_py==== SYNTAX: import_py({{ArgTypeString}} file_name) EXAMPLE: ''import_py("MyPYModel.PY")'' DESCRIPTION: Imports a Python geometry file to the project workspace. The default path is the Python subfolder under "Documents &rarr; EMAG".
== EM.Cube's Python Functions for Geometric Object Creation ==import_stl====
====boxSYNTAX: import_stl({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} base_x, {{ArgTypeAny}} base_y, {{ArgTypeAny}} height[, {{ArgTypeAny}} cap_top, {{ArgTypeAny}} cap_bottom]file_name)====
EXAMPLE: ''Example: boximport_stl("Box_1MySTLModel.STL",0,0,0,50,50,100)''
DescriptionDESCRIPTION: Draws a box object in Imports an external STL model file to the project workspace under . If the currently activated material group nodefile path is not specified, or modifies the box named 'label' if it already existscurrent project folder is assumed as the path.
====cylinder({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius, {{ArgTypeAny}} height[, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle, {{ArgTypeAny}} cap_top, {{ArgTypeAny}} cap_bottom])import_stp====
''ExampleSYNTAX: cylinderimport_stp("Cylinder_1",0,0,0,10,100{{ArgTypeString}} file_name)''
DescriptionEXAMPLE: Draws a cylinder object in the project workspace under the currently activated material group node, or modifies the cylinder named 'label' if it already existsimport_stp("MySTPModel. The arguments start_angle and end_angle are in degrees and specify a sweep about the cylinderSTP")''s azimuth axis.
====cone({{ArgTypeString}} labelDESCRIPTION: Imports an external STEP model file to the project workspace. If the file path is not specified, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} base_radius, {{ArgTypeAny}} height[, {{ArgTypeAny}} top_radius, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle, {{ArgTypeAny}} cap_top, {{ArgTypeAny}} cap_bottom])====the current project folder is assumed as the path.
''Example: cone("Cone_1",0,0,0,30,40,20,0,180)''====inductance====
DescriptionSYNTAX: Draws a cone object in the project workspace under the currently activated material group node, or modifies the cone named 'inductance({{ArgTypeString}} label' if it already exists. The arguments start_angle and end_angle are in degrees and specify a sweep about the cone's azimuth axis., {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2, {{ArgTypeAny}} x3, {{ArgTypeAny}} y3, {{ArgTypeAny}} z3, {{ArgTypeAny}} x4, {{ArgTypeAny}} y4, {{ArgTypeAny}} z4)
====pyramidEXAMPLE: ''inductance({{ArgTypeString}} label"FI_1", {{ArgTypeAny}} x00, {{ArgTypeAny}} y00, {{ArgTypeAny}} z0-10, {{ArgTypeAny}} base_x10, {{ArgTypeAny}} base_y0, {{ArgTypeAny}} height10,2.5,-2.5,0,7.5,2.5,0)====''
DESCRIPTION: Creates a inductance integral observable in [[EM.Ferma]]. If the observable 'label'Example: pyramid("Pyramid_1"already exists,0,0,0,10,10,100)''its properties are modified.
Description: Draws a pyramid object in the project workspace under the currently activated material group node, or modifies the pyramid named 'label' if it already exists.====inductor====
====sphereSYNTAX: inductor({{ArgTypeString}} label, {{ArgTypeAny}} x0line_object, {{ArgTypeAny}} y0offset, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius[, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle]inductance_nH)====
EXAMPLE: ''Example: sphereinductor("Sphere_1Cap_1",0"Line_1",0,025,10,0,180)''
DescriptionDESCRIPTION: Draws Creates a sphere object inductor in [[EM.Tempo]]. If the project workspace under the currently activated Material Group node, or modifies the sphere named inductor 'label' if it already exists. The arguments start_angle and end_angle , its properties are in degrees and specify a sweep about the sphere's azimuth axismodified.
====ellipsoid({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius_x, {{ArgTypeAny}} radius_y, {{ArgTypeAny}} radius_z[, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle])intersect====
''ExampleSYNTAX: ellipsoidintersect("Ellipsoid_1"{{ArgTypeString}} label,0{{ArgTypeString}} object_1,0,0,100,100,50,0,360{{ArgTypeString}} object_2)''
DescriptionEXAMPLE: Draws an ellipsoid object in the project workspace under the currently activated material group node, or modifies the ellipsoid named 'label' if it already exists. The arguments start_angle and end_angle are in degrees and specify a sweep about the ellipsoidintersect("Intersection_Object","Rect_Strip1","Rect_Strip2")''s azimuth axis.
====torus({{ArgTypeString}} DESCRIPTION: Creates a Boolean object named 'label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius_major, {{ArgTypeAny}} radius_minor[, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle])====' by intersecting object_1 and object_2. An error will be thrown if a Boolean object named 'label' already exists.
''Example: torus("Torus_1",0,0,0,50,20)''====line====
DescriptionSYNTAX: Draws an torus object in the project workspace under the currently activated material group node, or modifies the torus named 'line({{ArgTypeString}} label' if it already exists. The arguments start_angle and end_angle are in degrees and specify a sweep about the torus's azimuth axis., {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} length[, {{ArgTypeAny}} dir])
====rect_stripEXAMPLE: ''line({{ArgTypeString}} label"my_line", {{ArgTypeAny}} x00, {{ArgTypeAny}} y00, {{ArgTypeAny}} z00, {{ArgTypeAny}} side_x100, {{ArgTypeAny}} side_y"x")====''
DESCRIPTION: Draws a Line object in the project workspace under the currently activated material group node, or modifies the line named 'label'Example: rect_strip(if it already exists. Without the argument "my_rectangledir",0,0,0,50,20)''a vertical line is drawn by default.
Description: Draws a rectangle Strip object in the project workspace under the currently activated material group node, or modifies the rectangle strip object named 'label' if it already exists.====loft====
====circ_stripSYNTAX: loft({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} inner_radius, {{ArgTypeAnyArgTypeString}} outer_radius[object, {{ArgTypeAny}} start_angleloft_height, {{ArgTypeAny}} end_angle]cap_base)====
EXAMPLE: ''Example: circ_striploft("cs_1Loft_1",0,0,0"Rect_Strip1",50,0)''
DescriptionDESCRIPTION: Draws Creates or modifies a circle strip loft object in from a specified object by the project workspace under the currently activated material group nodespecified height. If modifying an existing loft object, or modifies the circle strip object named 'label' if it already existspre-existing primitive is used. The arguments start_angle This command can only loft objects that have a single face and end_angle are in degrees and specify a sweep about will loft along the circle stripface's azimuth axisnormal.
====radial_strip({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius, {{ArgTypeAny}} base_length, {{ArgTypeAny}} angle)lumped_src====
''ExampleSYNTAX: radial_striplumped_src("Radial_1"{{ArgTypeString}} label,0{{ArgTypeAny}} line_object,0{{ArgTypeAny}} offset,0{{ArgTypeAny}} polarity[,50{{ArgTypeAny}} amplitude,0{{ArgTypeAny}} phase,90{{ArgTypeAny}} resistance])''
DescriptionEXAMPLE: Draws a radial strip object in the project workspace under the currently activated material group node''lumped_src("LS_1","Line_1",50, or modifies the radial strip object named 0)'label' if it already exists.
====ellipse_strip({{ArgTypeString}} DESCRIPTION: Creates a lumped source in [[EM.Tempo]]. If the lumped source 'label' already exists, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius_x, {{ArgTypeAny}} radius_y[, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle])====its properties are modified.
''Example: ellipse_strip("es_1",0,0,0,50,0)''====magnet_group====
DescriptionSYNTAX: Draws a ellipse strip object in the project workspace under the currently activated material group node, or modifies the ellipse strip object named 'magnet_group({{ArgTypeString}} label' if it already exists. The arguments start_angle and end_angle are in degrees and specify a sweep about the ellipse strip's azimuth axis., {{ArgTypeAny}} mu, {{ArgTypeAny}} Mx, {{ArgTypeAny}} My, {{ArgTypeAny}} Mz)
====triangle_stripEXAMPLE: ''magnet_group({{ArgTypeString}} label"Magnet_1", {{ArgTypeAny}} x01, {{ArgTypeAny}} y00, {{ArgTypeAny}} z00, {{ArgTypeAny}} side1, {{ArgTypeAny}} side2, {{ArgTypeAny}} angle100)====''
DESCRIPTION: Creates a permanent magnet source group in [[EM.Ferma]]. If the magnet group 'label'Example: triangle_strip("ts_1"already exists,0,0,0,50,100,90)''the group is activated.
Description: Draws a triangle strip object in the project workspace under the currently activated material group node, or modifies the triangle strip object named 'label' if it already exists. ====mcos====
====taper_stripSYNTAX: mcos({{ArgTypeStringArgTypeReal}} labelx, {{ArgTypeAnyArgTypeReal}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} base_width, {{ArgTypeAny}} top_width, {{ArgTypeAny}} length, {{ArgTypeAny}} is_expor)====
EXAMPLE: ''Example: taper_stripmcos("ts_1",0.5,0,0,50,100,80,12)''
DescriptionDESCRIPTION: Draws a taper strip object in Computes and returns the project workspace under the currently activated material group node, or modifies the taper strip object named 'label' if it already exists. If the Boolean parameters "is_expo" is 1, an exponential taper will be drawnsuper-quadratic cosine function of order r.
====polygon_reg({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius, {{ArgTypeAny}} n_sides)mean====
''ExampleSYNTAX: polygon_regmean("ts_1"{{ArgTypeReal}} x,0,0,0,50,100,80,1{{ArgTypeReal}} y)''
DescriptionEXAMPLE: Draws a regular polygon object in the project workspace under the currently activated material group node''mean(1, or modifies the regular polygon object named 2)'label' if it already exists.
====spiral_stripDESCRIPTION: Computes and returns the arithmetic mean of x and y: 0.5*({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} width, {{ArgTypeAny}} radius_inner, {{ArgTypeAny}} radius_outer, {{ArgTypeAny}} nturns, {{ArgTypeAny}} spiral_dir, {{ArgTypeAny}} is_dualx+y)====.
''Example: spiral_strip("Spiral _1",0,0,0,10,50,5,0,0)''====merge_curve====
DescriptionSYNTAX: Draws a spiral strip object in the project workspace under the currently activated material group nodemerge_curve({{ArgTypeString}} object_1, or modifies the spiral strip named 'label' if it already exists. If the Boolean parameter "spiral_dir" is 1, the spiral curve will be drawn counter-clockwise. If the Boolean parameter "is_dual" is 1, a dual-arm spiral curve will be drawn. {{ArgTypeString}} object_2)
====polystripEXAMPLE: ''merge_curve({{ArgTypeString}} label"Curve_1", {{ArgType| 3x1 Python tuple}} p0, {{ArgType| 3x1 Python tuple}} p1, ... {{ArgType| 3x1 Python tuple}} pn"Curve_2")====''
''ExampleDESCRIPTION: polystrip("ps_1",(0,0,0),(1,0,0),(1,0,0))''Merges two specified curve objects into a single curve.
Description: Creates or modifies a Polystrip object in the project workspace. Each point is represented with a Python tuple type. The poly_strip function is 'self-closing' -- there is no need to supply the first point again at the end of the point list.====mesh====
====nurbs_stripSYNTAX: mesh({{ArgTypeString}} label, {{ArgType| 3x1 Python tuple}} p0, {{ArgType| 3x1 Python tuple}} p1, ... {{ArgType| 3x1 Python tuple}} pn)====
''ExampleDESCRIPTION: nurbs_strip("ns_1",(0,0,0),(1,0,0),(1,0,0))''Generates and displays the mesh of the physical structure.
Description: Creates or modifies a NURBS Strip object in the project workspace. Each point is represented with a Python tuple type. The nurbs_strip function is 'self-closing' -- there is no need to supply the first point again at the end of the point list.====microstrip_design====
====lineSYNTAX: microstrip_design({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAnyArgTypeReal}} z0, {{ArgTypeAny}} length[, {{ArgTypeAnyArgTypeReal}} dir]er)====
EXAMPLE: ''Example: linemicrostrip_design("my_line",0,0,0,10050,"x"2.2)''
DescriptionDESCRIPTION: Draws a Line object in Computes and returns the project workspace under the currently activated material group node, or modifies the line named 'label' if it already exists. Without the argument "dir", width-to-height ratio of a vertical microstrip transmission line is drawn by defaultwith characteristic impedance z0 in Ohms and substrate relative permittivity er.
====circle({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle)microstrip_eps_eff====
''ExampleSYNTAX: circlemicrostrip_eps_eff("pyramid_1"{{ArgTypeReal}} w,0{{ArgTypeReal}} h,0,0,10,10,100{{ArgTypeReal}} er)''
DescriptionEXAMPLE: Draws a circular curve object in the project workspace under the currently activated material group node, or modifies the circle named 'label' if it already existsmicrostrip_eps_eff(2,0. The parameters start_angle and end_angle are in degrees5,2.2)''
====superquad({{ArgTypeString}} labelDESCRIPTION: Computes and returns the effective permittivity of a microstrip transmission line with width w, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} diam_x, {{ArgTypeAny}} diam_y, {{ArgTypeAny}} order)====substrate height h and substrate relative permittivity er.
''Example: superquad("SuperQuad_1",0,0,0,50,20,4)''====microstrip_lambda_g====
DescriptionSYNTAX: Draws a super-quadratic curve object in the project workspace under the currently activated material group nodemicrostrip_lambda_g({{ArgTypeReal}} w, or modifies the super-quadratic curve named 'label' if it already exists. If order = 2{{ArgTypeReal}} h, the curve reduces to an ellipse. Higher order make the round edges sharper. An infinite order reduces the curve to a rectangle. {{ArgTypeReal}} er, {{ArgTypeReal}} freq_hertz)
====parabolaEXAMPLE: ''microstrip_lambda_g({{ArgTypeString}} label2, {{ArgTypeAny}} x00.5, {{ArgTypeAny}} y02.2, {{ArgTypeAny}} z0, {{ArgTypeAny}} focal_length, {{ArgTypeAny}} axial_length, {{ArgTypeAny}} half_only2e9)====''
''ExampleDESCRIPTION: parabolaComputes and returns the guide wavelength ("Parabola _1"in meters) of a microstrip transmission line with width w,0,0,0,50,20,0)''substrate height h and substrate relative permittivity er at an operating frequency of freq_hertz.
Description: Draws a parabola object in the project workspace under the currently activated material group node, or modifies the parabola named 'label' if it already exists. If the Boolean parameter "half_only" is 1, only half of the parabola will be drawn. ====microstrip_src====
====hyperbolaSYNTAX: microstrip_src({{ArgTypeString}} label, {{ArgTypeAny}} x0rect_object, {{ArgTypeAny}} y0height, {{ArgTypeAny}} z0edge[, {{ArgTypeAny}} diam_xamplitude, {{ArgTypeAny}} diam_yphase, {{ArgTypeAny}} axial_length, {{ArgTypeAny}} half_onlyresistance])====
EXAMPLE: ''Example: hyperbolamicrostrip_src("Hyperbola _1MS_1",0"Rect_1",01.5,0,50,40,20,0"+x")''
DescriptionDESCRIPTION: Draws Creates a hyperbola object microstrip port source in [[EM.Tempo]]. If the project workspace under the currently activated material group node, or modifies the hyperbola named microstrip port 'label' if it already exists. If the Boolean parameter "half_only" is 1, only half of the hyperbola will be drawnits properties are modified.
====spiral_curve({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius_inner, {{ArgTypeAny}} radius_outer, {{ArgTypeAny}} nturns, {{ArgTypeAny}} spiral_dir, {{ArgTypeAny}} is_dual)microstrip_z0====
''ExampleSYNTAX: spiral_curvemicrostrip_z0("Spiral _1"{{ArgTypeReal}} w,0{{ArgTypeReal}} h,0,0,10,50,5,0,0{{ArgTypeReal}} er)''
DescriptionEXAMPLE: Draws a spiral curve object in the project workspace under the currently activated material group node, or modifies the spiral curve named 'label' if it already exists. If the Boolean parameter "spiral_dir" is 1microstrip_z0(2, the spiral curve will be drawn counter-clockwise0. If the Boolean parameter "is_dual" is 15, a dual-arm spiral curve will be drawn2. 2)''
====helixDESCRIPTION: Computes and returns the characteristic impedance ({{ArgTypeString}} labelin Ohms) of a microstrip transmission line with width w, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius_inner, {{ArgTypeAny}} radius_outer, {{ArgTypeAny}} nturns, {{ArgTypeAny}} helix_dir)====substrate height h and substrate relative permittivity er.
''Example: helix("Helix_1",0,0,0,15,15,10,0)''====microstrip_zoc====
DescriptionSYNTAX: Draws a helical curve in the project workspace under the currently activated material group nodemicrostrip_zoc({{ArgTypeReal}} w, or modifies the helix named 'label' if it already exists. The parameter "radius_inner" specifies the helix's radius at the beginning of the helix{{ArgTypeReal}} l, and radius_outer specifies the radius at the end of the helix. If the Boolean parameter "helixl_dir" is 1{{ArgTypeReal}} h, the helical curve will be drawn counter-clockwise. {{ArgTypeReal}} er, {{ArgTypeReal}} freq_hertz)
====polylineEXAMPLE: ''microstrip_zoc({{ArgTypeString}} label2, {{ArgType| 3x1 Python tuple}} p025, {{ArgType| 3x1 Python tuple}} p10.5, 2... {{ArgType| 3x1 Python tuple}} pn2,2e9)====''
''ExampleDESCRIPTION: polylineComputes and returns the input reactance ("pl_1",(0,0,0in Ohms)of an open-circuited microstrip transmission line with width w,(1length l,0,0),(1,0,0))''substrate height h and substrate relative permittivity er at an operating frequency of freq_hertz.
Description: Creates or modifies a PolyLine object in the project workspace. Each point is represented with a Python tuple type. The poly_line is closed if p0 is specified again as pn, otherwise, it is open.====microstrip_zsc====
====nurbs_curveSYNTAX: microstrip_zsc({{ArgTypeStringArgTypeReal}} labelw, {{ArgType| 3x1 Python tupleArgTypeReal}} p0l, {{ArgType| 3x1 Python tupleArgTypeReal}} p1h, ... {{ArgType| 3x1 Python tupleArgTypeReal}} pner, {{ArgTypeReal}} freq_hertz)====
EXAMPLE: ''Example: nurbs_curvemicrostrip_zsc("nc_1"2,(025,0.5,0)2.2,(1,0,0),(1,0,0)2e9)''
DescriptionDESCRIPTION: Creates or modifies Computes and returns the input reactance (in Ohms) of a NURBS Curve object in the project workspace. Each point is represented short-circuited microstrip transmission line with a Python tuple type. The curve is closed if p0 is specified again as pnwidth w, otherwiselength l, it is opensubstrate height h and substrate relative permittivity er at an operating frequency of freq_hertz.
====point({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0)mirror====
''ExampleSYNTAX: pointmirror("Point_1"{{ArgTypeString}} object,0{{ArgTypeAny}} x0,0{{ArgTypeAny}} y0,10{{ArgTypeAny}} z0, {{ArgTypeAny}} uX, {{ArgTypeAny}} uY, {{ArgTypeAny}} uZ)''
DescriptionEXAMPLE: Draws a point in the project workspace under the currently activated material group node''mirror("pyramid_1",0,0,0,1,0, or modifies the point named 0)'label' if it already exists.
====fractal_tree({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} key_type, {{ArgTypeAny}} key_size, {{ArgTypeAny}} n_level, {{ArgTypeAny}} sep_angle, {{ArgTypeAny}} n_gen, {{ArgTypeAny}} prune_factor, {{ArgTypeAny}} thickness, {{ArgTypeAny}} thick_factor)====DESCRIPTION: Mirrors an object in a plane defined by the specified point coordinates and specified normal vector components.
''Example: fractal_tree("Fractal_1",0,0,0,"line",10,3,30,3,0,0,0)''====move_to====
DescriptionSYNTAX: Generates a fractal tree in the project workspace under the currently activated material group nodemove_to({{ArgTypeString}} object, or modifies the fractal tree named 'label' if it already exists. {{ArgTypeString}} group_node_label[, {{ArgTypeString}} module_name])
====param_curveEXAMPLE: ''move_to({{ArgTypeString}} label"NewObj", {{ArgTypeAny}} x0"MyObj", {{ArgTypeAny}} y010, {{ArgTypeAny}} z010, {{ArgTypeAny}} model, {{ArgTypeAny}} orientation, {{ArgTypeAny}} start, {{ArgTypeAny}} stop, {{ArgTypeAny}} step, {{ArgTypeAny}} function[, {{ArgTypeAny}} y(t), {{ArgTypeAny}} z(t)]0)====''
''ExampleDESCRIPTION: param_curve("Curve_1",0,0,0,"parametric","xy",0,10,0Transfers an object from its current material/object group node in the navigation tree to another node or optionally to another [[EM.Cube]] module.1,"cos(t)","sin(t)","t")''
Description: Generates a parametric curve in the project workspace under the currently activated material group node, or modifies the parametric curve named 'label' if it already exists.====msin====
====param_surfaceSYNTAX: msin({{ArgTypeStringArgTypeReal}} labelx, {{ArgTypeAnyArgTypeReal}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} orientation, {{ArgTypeAny}} start1, {{ArgTypeAny}} stop1, {{ArgTypeAny}} step1, , {{ArgTypeAny}} start2, {{ArgTypeAny}} stop2, {{ArgTypeAny}} step2, {{ArgTypeAny}} functionr)====
EXAMPLE: ''Example: param_surfacemsin("Surf_1",0,0,0,"xy",0,10,0.15,0,10,0.1,"sin(x)*sin(y)"2)''
DescriptionDESCRIPTION: Generates a parametric surface in Computes and returns the project workspace under the currently activated material group node, or modifies the parametric surface named 'label' if it already existssuper-quadratic sine function of order r.
====import_stl({{ArgTypeString}} file_name)nurbs_curve====
''ExampleSYNTAX: import_stlnurbs_curve("MySTLModel{{ArgTypeString}} label, {{ArgType| 3x1 Python tuple}} p0, {{ArgType| 3x1 Python tuple}} p1, .STL".. {{ArgType| 3x1 Python tuple}} pn)''
DescriptionEXAMPLE: Imports an external STL model file to the project workspace. If the file path is not specified''nurbs_curve("nc_1", the current project folder is assumed as the path.(0,0,0),(1,0,0),(1,0,0))''
====import_dxf({{ArgTypeString}} file_name)====DESCRIPTION: Creates or modifies a NURBS Curve object in the project workspace. Each point is represented with a Python tuple type. The curve is closed if p0 is specified again as pn, otherwise, it is open.
''Example: import_dxf("MyDXFModel.DXF")''====nurbs_strip====
DescriptionSYNTAX: Imports an external DXF model file to the project workspace. If the file path is not specifiednurbs_strip({{ArgTypeString}} label, the current project folder is assumed as the path{{ArgType| 3x1 Python tuple}} p0, {{ArgType| 3x1 Python tuple}} p1, ...{{ArgType| 3x1 Python tuple}} pn)
====import_stpEXAMPLE: ''nurbs_strip({{ArgTypeString}} file_name"ns_1",(0,0,0),(1,0,0),(1,0,0))====''
''ExampleDESCRIPTION: import_stp("MySTPModelCreates or modifies a NURBS Strip object in the project workspace.STP")Each point is represented with a Python tuple type. The nurbs_strip function is 'self-closing'-- there is no need to supply the first point again at the end of the point list.
Description: Imports an external STEP model file to the project workspace. If the file path is not specified, the current project folder is assumed as the path.====ohmic_loss====
====import_igsSYNTAX: ohmic_loss({{ArgTypeString}} file_namelabel, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2)====
EXAMPLE: ''Example: import_igsohmic_loss("MyIGSModel.IGSFI_1",-10,-10,-10,10,10,10)''
DescriptionDESCRIPTION: Imports Creates an external IGES model file to the project workspaceohmic loss integral observable in [[EM.Ferma]]. If the file path is not specifiedobservable 'label' already exists, the current project folder is assumed as the pathits properties are modified.
====import_py({{ArgTypeString}} file_name)parabola====
''ExampleSYNTAX: import_pyparabola("MyPYModel.PY"{{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} focal_length, {{ArgTypeAny}} axial_length, {{ArgTypeAny}} half_only)''
DescriptionEXAMPLE: Imports a Python geometry file to the project workspace. The default path is the Python subfolder under ''parabola("Documents &rarr; EMAGParabola _1".,0,0,0,50,20,0)''
====export_stl({{ArgTypeString}} file_name)====DESCRIPTION: Draws a parabola object in the project workspace under the currently activated material group node, or modifies the parabola named 'label' if it already exists. If the Boolean parameter "half_only" is 1, only half of the parabola will be drawn.
''Example: export_stl("MySTLModel.STL")''====param_curve====
DescriptionSYNTAX: Exports the physical structure of the project workspacean to an STL param_curve({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} model file. If the file path is not specified, the current project folder is assumed as the path.{{ArgTypeAny}} orientation, {{ArgTypeAny}} start, {{ArgTypeAny}} stop, {{ArgTypeAny}} step, {{ArgTypeAny}} function[, {{ArgTypeAny}} y(t), {{ArgTypeAny}} z(t)])
====export_dxfEXAMPLE: ''param_curve({{ArgTypeString}} file_name"Curve_1",0,0,0,"parametric","xy",0,10,0.1,"cos(t)","sin(t)","t")====''
DESCRIPTION: Generates a parametric curve in the project workspace under the currently activated material group node, or modifies the parametric curve named 'label'Example: export_dxf("MyDXFModelif it already exists.DXF")''
Description: Exports the physical structure of the project workspacean to a DXF model file. If the file path is not specified, the current project folder is assumed as the path.====param_surface====
====export_pySYNTAX: param_surface({{ArgTypeString}} file_namelabel, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} orientation, {{ArgTypeAny}} start1, {{ArgTypeAny}} stop1, {{ArgTypeAny}} step1, , {{ArgTypeAny}} start2, {{ArgTypeAny}} stop2, {{ArgTypeAny}} step2, {{ArgTypeAny}} function)====
EXAMPLE: ''Example: export_pyparam_surface("MyPYModelSurf_1",0,0,0,"xy",0,10,0.PY1,0,10,0.1,"sin(x)*sin(y)")''
DescriptionDESCRIPTION: Exports the physical structure of Generates a parametric surface in the project workspace under the currently activated material group node, or modifies the current object selection to a Python geometry file. The default path is the Python subfolder under "Documents &rarr; EMAG"parametric surface named 'label' if it already exists.
== EM.Cube's Python Functions for Geometric Object Transformation ==pec_group====
====freezeSYNTAX: pec_group({{ArgTypeString}} object, {{ArgTypeReal}} freeze_statelabel)====
EXAMPLE: ''Example: freezepec_group("MyObjPEC_1",1)''
DescriptionDESCRIPTION: Sets Creates a PEC material group in the freeze state of an object (0/1)current module. If the PEC group 'label' already exists, the group is activated.
====move_to({{ArgTypeString}} object, {{ArgTypeString}} group_node_label[, {{ArgTypeString}} module_name])pec_via_group====
''ExampleSYNTAX: move_topec_via_group("NewObj"{{ArgTypeString}} label,"MyObj",10,10,0{{ArgTypeAny}} host_layer)''
DescriptionEXAMPLE: Transfers an object from its current material/object group node in the navigation tree to another node or optionally to another [[EM.Cube]] module. ''pec_via_group("PEC_1",10)''
====clone({{ArgTypeString}} DESCRIPTION: Creates an embedded PEC via set group in the current module. If the PEC via group 'label' already exists, {{ArgTypeString}} object, {{ArgTypeReal}} x0, {{ArgTypeReal}} y0, {{ArgTypeReal}} z0)====the group is activated.
''Example: clone("NewObj","MyObj",10,10,0)''====pec_voltage_group====
DescriptionSYNTAX: Creates a copy of the specified object and repositions it at the given coordinates. pec_voltage_group({{ArgTypeString}} label, {{ArgTypeAny}} voltage)
====translate_byEXAMPLE: ''pec_voltage_group({{ArgTypeString}} object"PEC_1", {{ArgTypeReal}} x_dist, {{ArgTypeReal}} y_dist, {{ArgTypeReal}} z_dist10)====''
DESCRIPTION: Creates a fixed-potential PEC object group in the current module. If the PEC group 'label'Example: translate_by("MyObj"already exists,10,10,x)''the group is activated.
Description: Translates an object by the specified distances in each direction.====penetrable_surface_group====
====translate_toSYNTAX: penetrable_surface_group({{ArgTypeString}} objectlabel, {{ArgTypeRealArgTypeAny}} x_desteps, {{ArgTypeRealArgTypeAny}} y_destsigma, {{ArgTypeRealArgTypeAny}} z_destthickness)====
EXAMPLE: ''Example: translate_topenetrable_surface_group("MyObjPenet_1",202.2,200.0001,x21)''
DescriptionDESCRIPTION: Translates an object to Creates a penetrable surface group in [[EM.Terrano]]. If the specified destinationpenetrable surface group 'label' already exists, the group is activated.
====rotate({{ArgTypeString}} object, {{ArgTypeAny}} rot_angle_degree, {{ArgTypeAny}} rot_axis_x, {{ArgTypeAny}} rot_axis_y, {{ArgTypeAny}} rot_axis_z)penetrable_volume_group====
''ExampleSYNTAX: rotatepenetrable_volume_group("Pyramid_1"{{ArgTypeString}} label,45{{ArgTypeAny}} eps,1,1,0{{ArgTypeAny}} sigma)''
DescriptionEXAMPLE: Rotates an object about a line passing through its LCS center and aligned along the specified direction vector ''penetrable_volume_group(rot_axis) by the specified angle"Vol_Penet_1",2.2,0.0001)''
====scale({{ArgTypeString}} objectDESCRIPTION: Creates a penetrable volume group in [[EM.Terrano]]. If the penetrable volume group 'label' already exists, {{ArgTypeAny}} scale_factor)====the group is activated.
''Example: scale("pyramid_1",2)''====pipe_sweep====
DescriptionSYNTAX: Scales an pipe_sweep({{ArgTypeString}} object by the specified scale factor., {{ArgTypeAny}} radius)
====mirrorEXAMPLE: ''pipe_sweep({{ArgTypeString}} object"Curve_1", {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} uX, {{ArgTypeAny}} uY, {{ArgTypeAny}} uZ5)====''
''ExampleDESCRIPTION: mirror("pyramid_1",0,0,0,1,0,0)''Creates a pipe version of a given curve object.
Description: Mirrors an object in a plane defined by the specified point coordinates and specified normal vector components.====planewave====
====groupSYNTAX: planewave({{ArgTypeString}} label, {{ArgTypeStringArgTypeAny}} object_1theta, {{ArgTypeStringArgTypeAny}} object_2phi, ...{{ArgTypeAny}} polarization)====
'EXAMPLE: 'Example: group'planewave("Composite_1PW_1","Box_1"180,"Box_2"0,"Box_3tm")''
DescriptionDESCRIPTION: Groups Creates a number of objects into a composite object with plane wave source. If the given plane wave source 'label' already exists, its properties are modified.
====array({{ArgTypeString}} label, {{ArgTypeString}} object, {{ArgTypeAny}} x_count, {{ArgTypeAny}} y_count, {{ArgTypeAny}} z_count, {{ArgTypeAny}} x_spacing, {{ArgTypeAny}} y_spacing, {{ArgTypeAny}} z_spacing)plot_file====
''ExampleSYNTAX: arrayplot_file("Array_1","Rect_Strip_1",4,4,1,50,50,0{{ArgTypeString}} filename)''
DescriptionEXAMPLE: Creates or modifies an array object''plot_file("D0.DAT")''
====array_custom({{ArgTypeString}} label, {{ArgTypeString}} object, {{ArgTypeAny}} x_count, {{ArgTypeAny}} y_count, {{ArgTypeAny}} z_count, {{ArgTypeAny}} x_spacing, {{ArgTypeAny}} y_spacing, {{ArgTypeAny}} z_spacing, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} rot_x, {{ArgTypeAny}} rot_y, {{ArgTypeAny}} rot_z)====DESCRIPTION: Plots the contents of a specified data file in EM.Grid.
''Example: array_custom("Array_1","Rect_Strip_1",4,4,1,50,50,0,100,100,20,0,0,45)''====pmc_group====
DescriptionSYNTAX: Creates or modifies an array object and sets its local coordinate system and rotation angles.pmc_group({{ArgTypeString}} label)
====explodeEXAMPLE: ''pmc_group({{ArgTypeString}} object"PMC_1")====''
''ExampleDESCRIPTION: explode("MyArray")Creates a PMC material group in the current module. If the PMC group 'label'already exists, the group is activated.
Description: Explodes an object into its basic primitives.====point====
====subtractSYNTAX: point({{ArgTypeString}} label, {{ArgTypeStringArgTypeAny}} object_1x0, {{ArgTypeStringArgTypeAny}} y0, {{ArgTypeAny}} object_2z0)====
EXAMPLE: ''Example: subtractpoint("Subtract_ObjectPoint_1","Rect_Strip1"0,"Rect_Strip2"0,10)''
DescriptionDESCRIPTION: Creates Draws a Boolean object point in the project workspace under the currently activated material group node, or modifies the point named 'label' by subtracting object_2 from object_1. An error will be thrown if a Boolean object named 'label' it already exists.
====union({{ArgTypeString}} label, {{ArgTypeString}} object_1, {{ArgTypeString}} object_2)polygon_reg====
''ExampleSYNTAX: unionpolygon_reg("Union_Object"{{ArgTypeString}} label,"Rect_Strip1"{{ArgTypeAny}} x0,"Rect_Strip2"{{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius, {{ArgTypeAny}} n_sides)''
DescriptionEXAMPLE: Creates a Boolean object named 'label' by unioning object_1 and object_2. An error will be thrown if a Boolean object named polygon_reg("ts_1",0,0,0,50,100,80,1)'label' already exists.
====intersect({{ArgTypeString}} DESCRIPTION: Draws a regular polygon object in the project workspace under the currently activated material group node, or modifies the regular polygon object named 'label, {{ArgTypeString}} object_1, {{ArgTypeString}} object_2)====' if it already exists.
''Example: intersect("Intersection_Object","Rect_Strip1","Rect_Strip2")''====polygonize====
DescriptionSYNTAX: Creates a Boolean polygonize({{ArgTypeString}} object named 'label' by intersecting object_1 and object_2. An error will be thrown if a Boolean object named 'label' already exists., {{ArgTypeAny}} side_length)
====extrudeEXAMPLE: ''polygonize({{ArgTypeString}} label"Cric_1", {{ArgTypeString}} object, {{ArgTypeAny}} extrude_height, {{ArgTypeAny}} cap_ends2)====''
''ExampleDESCRIPTION:extrude("Extrude_1","Rect_Strip1",50)''Polygonizes the specified surface or curve object by the specified side length. The results is a polystrip or a polyline.
Description: Creates or modifies an extrusion object from a specified object by the specified height. If modifying an existing extrusion object, the pre-existing primitive is used. This command can only extrude objects that have a single face and will extrude along the face's normal.====polyline====
====loftSYNTAX: polyline({{ArgTypeString}} label, {{ArgTypeStringArgType| 3x1 Python tuple}} objectp0, {{ArgTypeAnyArgType| 3x1 Python tuple}} loft_heightp1, ... {{ArgTypeAnyArgType| 3x1 Python tuple}} cap_basepn)====
EXAMPLE: ''Example: loftpolyline("Loft_1pl_1","Rect_Strip1"(0,0,0),(1,0,0),(1,0,500))''
DescriptionDESCRIPTION: Creates or modifies a loft PolyLine object from in the project workspace. Each point is represented with a Python tuple type. The poly_line is closed if p0 is specified object by the specified height. If modifying an existing loft objectagain as pn, the pre-existing primitive otherwise, it is used. This command can only loft objects that have a single face and will loft along the face's normalopen.
====revolve({{ArgTypeString}} label, {{ArgTypeString}} object, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} uX, {{ArgTypeAny}} uY, {{ArgTypeAny}} uZ, {{ArgTypeAny}} rot_angle)polymesh====
''ExampleSYNTAX: revolvepolymesh("Rev1"{{ArgTypeString}} label,"Line_1"{{ArgTypeString}} object,0,0,0,0,0,1,360{{ArgTypeAny}} edge_length)''
DescriptionEXAMPLE: Creates or modifies a revolution object from a specified object. If modifying an existing revolution object, the pre-existing primitive object is used. ''polymesh(x0"Poly_1",y0"Cric_1",z02) specifies the center of revolution, and (uX,uY,uZ) specifies the revolution axis. The revolution angle "rot_angle" is given in degrees.''
====consolidate({{ArgTypeString}} DESCRIPTION: Discretizes the specified solid or surface object)====by the specified edge length. The results is a polymesh object.
''Example: consolidate("Poly_1")''====polystrip====
DescriptionSYNTAX: Consolidates a specified objectpolystrip({{ArgTypeString}} label, {{ArgType| 3x1 Python tuple}} p0, {{ArgType| 3x1 Python tuple}} p1, ... {{ArgType| 3x1 Python tuple}} pn)
====spline_fitEXAMPLE: ''polystrip({{ArgTypeString}} object"ps_1",(0,0,0),(1,0,0),(1,0,0))====''
''ExampleDESCRIPTION: spline_fit("Poly_1")Creates or modifies a Polystrip object in the project workspace. Each point is represented with a Python tuple type. The poly_strip function is 'self-closing'-- there is no need to supply the first point again at the end of the point list.
Description: Applies spline fit transformation on a specified polymesh, polyline or polystrip object.====port_definition_custom====
====fill_curveSYNTAX: port_definition_custom({{ArgTypeString}} objectlabel, ({{ArgTypeString}} port_1_src_1, {{ArgTypeString}} port_1_src_2, ..., {{ArgTypeString}} port_1_impedance), ({{ArgTypeString}} port_2_src_1, {{ArgTypeString}} port_2_src_2, ..., {{ArgTypeString}} port_2_impedance), ...)====
EXAMPLE: ''Example: fill_curveport_definition_custom("Curve_1PD_1",("LS_1","LS_2",50),,("LS_3","LS_4",50))''
DescriptionDESCRIPTION: Fill Creates a custom port definition observable. If the interior of the specified closed curve objectobservable 'label' already exists, its properties are modified.
====merge_curve({{ArgTypeString}} object_1, {{ArgTypeString}} object_2)port_definition_default====
''ExampleSYNTAX: merge_curveport_definition_default("Curve_1","Curve_2"{{ArgTypeString}} label)''
DescriptionEXAMPLE: Merges two specified curve objects into a single curve.''port_definition_default("PD_1")''
====close_curve({{ArgTypeString}} DESCRIPTION: Creates a default port definition observable. If the observable 'label' already exists, {{ArgTypeString}} close_state)====its properties are modified.
''Example: close_curve("Curve_1",1)''====probe_gap_src====
DescriptionSYNTAX: Sets the open/close state of a polyline or NURBS curve. Use 0 for open curve and 1 for close curve.probe_gap_src({{ArgTypeString}} label, {{ArgTypeAny}} via_object, {{ArgTypeAny}} polarity[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance])
====polygonizeEXAMPLE: ''probe_gap_src({{ArgTypeString}} object"Probe_1", {{ArgTypeAny}} side_length"Via_1",0)====''
DESCRIPTION: Creates a probe gap circuit source in [[EM.Picasso]]. If the probe gap source 'label'Example: polygonize("Cric_1"already exists,2)''its properties are modified.
Description: Polygonizes the specified surface or curve object by the specified side length. The results is a polystrip or a polyline.====pyramid====
====polymeshSYNTAX: pyramid({{ArgTypeString}} label, {{ArgTypeStringArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} base_x, {{ArgTypeAny}} objectbase_y, {{ArgTypeAny}} edge_lengthheight)====
EXAMPLE: ''Example: polymeshpyramid("Poly_1Pyramid_1","Cric_1"0,0,0,10,10,2100)''
DescriptionDESCRIPTION: Discretizes Draws a pyramid object in the specified solid project workspace under the currently activated material group node, or surface object by modifies the specified edge length. The results is a polymesh objectpyramid named 'label' if it already exists.
====fillet({{ArgTypeString}} object, {{ArgTypeAny}} radius)radial_strip====
''ExampleSYNTAX: filletradial_strip("Rect_1"{{ArgTypeString}} label,5{{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius, {{ArgTypeAny}} base_length, {{ArgTypeAny}} angle)''
DescriptionEXAMPLE: Fillets the corners of the specified surface or curve object by the specified radius.''radial_strip("Radial_1",0,0,0,50,0,90)''
====slice({{ArgTypeString}} DESCRIPTION: Draws a radial strip objectin the project workspace under the currently activated material group node, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} uX, {{ArgTypeAny}} uY, {{ArgTypeAny}} uZ)====or modifies the radial strip object named 'label' if it already exists.
''Example: fillet("Rect_1",5)''====rail_sweep====
DescriptionSYNTAX: Slices the specified object into two parts using the specified plane given by the point coordinates and normal vector coordinates.rail_sweep({{ArgTypeString}} rail_object, {{ArgTypeString}} sweep_object)
====roughenEXAMPLE: ''rail_sweep({{ArgTypeString}} label"Curve_1", {{ArgTypeString}} object, {{ArgTypeAny}} rms_height, {{ArgTypeAny}} correl_length"Curve_2")====''
''ExampleDESCRIPTION: roughen("Rect_1",1,5)''Rail-sweeps the specified sweep object along the specified curve object.
Description: Roughens the surface of the specified object based on the specified RMS height and correlation length.====ramp====
====random_groupSYNTAX: ramp({{ArgTypeStringArgTypeReal}} label, {{ArgTypeString}} key_object, {{ArgTypeString}} container_object, {{ArgTypeAny}} element_countx)====
EXAMPLE: ''Example: random_groupramp("Rand_1","Rect_1","Box_1",1000.5)''
DescriptionDESCRIPTION: Creates a random group using the specified key object Computes and confines them in returns the specified container objectramp function: x if x>0, 0 if x<0.
====strip_sweep({{ArgTypeString}} object, {{ArgTypeAny}} width)rand====
''ExampleSYNTAX: strip_sweeprand("Curve_1"{{ArgTypeReal}} x,5{{ArgTypeReal}} y)''
DescriptionEXAMPLE: Creates a strip version of a given curve object.''rand(0,1)''
====pipe_sweep({{ArgTypeString}} object, {{ArgTypeAny}} radius)====DESCRIPTION: Computes and returns a random number between x and y using an uniform distribution.
''Example: pipe_sweep("Curve_1",5)''====random_group====
DescriptionSYNTAX: Creates a pipe version of a given curve object.random_group({{ArgTypeString}} label, {{ArgTypeString}} key_object, {{ArgTypeString}} container_object, {{ArgTypeAny}} element_count)
====rail_sweepEXAMPLE: ''random_group({{ArgTypeString}} rail_object"Rand_1", {{ArgTypeString}} sweep_object"Rect_1","Box_1",100)====''
''ExampleDESCRIPTION: rail_sweep("Curve_1","Curve_2")''Creates a random group using the specified key object and confines them in the specified container object.
Description: Rail-sweeps the specified sweep object along the specified curve object.====rcs_bistatic====
== EM.Cube's Python Functions for Material or Object Group Creation ==SYNTAX: rcs_bistatic({{ArgTypeString}} label, {{ArgTypeAny}} theta_incr, {{ArgTypeAny}} phi_incr[, {{ArgTypeAny}} frequency])
====activateEXAMPLE: ''rcs_bistatic({{ArgTypeString}} group_node_label"RCS_1",1,1)====''
''ExampleDESCRIPTION: activate("Color_1")Creates a bistatic RCS observable. The frequency can also be optionally specified for [[EM.Tempo]]. If the observable 'label'already exists, its properties are modified.
Description: Activates a color, material or object group in the current active [[EM.Cube]] module. ====rcs_monostatic====
====color_groupSYNTAX: rcs_monostatic({{ArgTypeString}} label, {{ArgTypeAny}} theta_incr, {{ArgTypeAny}} phi_incr[, {{ArgTypeAny}} frequency])====
EXAMPLE: ''Example: color_grouprcs_monostatic("Color_1RCS_1",1,1)''
DescriptionDESCRIPTION: Creates a color group in CubeCAD modulemonostatic RCS observable. The frequency can also be optionally specified for [[EM.Tempo]]. If the color group observable 'label' already exists, the group is activatedits properties are modified.
====pec_group({{ArgTypeString}} label)receiver_set====
''ExampleSYNTAX: pec_groupreceiver_set("PEC_1"{{ArgTypeString}} label, {{ArgTypeAny}} base_point_set[, {{ArgTypeAny}} pattern_file, {{ArgTypeAny}} rot_x, {{ArgTypeAny}} rot_y, {{ArgTypeAny}} rot_z)''
DescriptionEXAMPLE: Creates a PEC material group in the current module. If the PEC group 'label' already existsreceiver_set("TX_1", the group is activated"PT_1","DPL_STD.RAD",0,90,0)''
====pec_voltage_group({{ArgTypeString}} DESCRIPTION: Creates a receiver set in [[EM.Terrano]]. If the receiver set 'label' already exists, {{ArgTypeAny}} voltage)====its properties are modified.
''Example: pec_voltage_group("PEC_1",10)''====rect====
DescriptionSYNTAX: Creates a fixed-potential PEC object group in the current module. If the PEC group 'label' already exists, the group is activated.rect({{ArgTypeReal}} x)
====pec_via_groupEXAMPLE: ''rect({{ArgTypeString}} label, {{ArgTypeAny}} host_layer0.1)====''
''ExampleDESCRIPTION: pec_via_group("PEC_1"Computes and returns the rectangular window function: 1 if x<0.5,10)''0 elsewhere.
Description: Creates an embedded PEC via set group in the current module. If the PEC via group 'label' already exists, the group is activated.====rect_gap_src====
====thinwire_groupSYNTAX: rect_gap_src({{ArgTypeString}} label, {{ArgTypeAny}} radiusrect_object, {{ArgTypeAny}} offset, {{ArgTypeAny}} polarity[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance])====
EXAMPLE: ''Example: thinwire_grouprect_gap_src("Thinwire_1GAP_1",4"Rect_1",0,0)''
DescriptionDESCRIPTION: Creates a Thinwire material group strip gap circuit source in the current module[[EM.Picasso]] or [[EM.Libera]]. If the thin wire group strip gap source 'label' already exists, the group is activatedits properties are modified.
====pmc_group({{ArgTypeString}} label)rect_strip====
''ExampleSYNTAX: pmc_grouprect_strip("PMC_1"{{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} side_x, {{ArgTypeAny}} side_y)''
DescriptionEXAMPLE: Creates a PMC material group in the current module. If the PMC group 'label' already existsrect_strip("my_rectangle", the group is activated.0,0,0,50,20)''
====slot_group({{ArgTypeString}} DESCRIPTION: Draws a rectangle Strip object in the project workspace under the currently activated material group node, or modifies the rectangle strip object named 'label)====' if it already exists.
''Example: slot_group("PMC_1")''====rename====
DescriptionSYNTAX: Creates a slot trace group in the current module. If the slot trace group 'label' already existsrename({{ArgTypeString}} new_label, the group is activated.{{ArgTypeString}} old_label)
====dielectric_groupEXAMPLE: ''rename({{ArgTypeString}} label"Box_2", {{ArgTypeAny}} eps, {{ArgTypeAny}} sigma, {{ArgTypeAny}} mu, {{ArgTypeAny}} rho"Box_1")====''
''ExampleDESCRIPTION: dielectric_group("Dielectric_1"Deletes a node name from the navigation tree. The node can be any geometric object,"my_eps"source,0,1,0)''observable or material group.
Description: Creates a dielectric material group in the current module with the specified material properties. If the dielectric group 'label' already exists, the group is activated.====resistance====
====impenetrable_surface_groupSYNTAX: resistance({{ArgTypeString}} label, {{ArgTypeAny}} epsx1, {{ArgTypeAny}} sigmay1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2, {{ArgTypeAny}} x3, {{ArgTypeAny}} y3, {{ArgTypeAny}} z3, {{ArgTypeAny}} x4, {{ArgTypeAny}} y4, {{ArgTypeAny}} z4)====
EXAMPLE: ''Example: impenetrable_surface_groupresistance("Impenet_1FI_1",2.20,0,-10,0,0,10,-10,-10,0,10,10,0.0001)''
DescriptionDESCRIPTION: Creates an impenetrable surface group a resistance integral observable in [[EM.TerranoFerma]]. If the impenetrable surface group observable 'label' already exists, the group is activatedits properties are modified.
====penetrable_surface_group({{ArgTypeString}} label, {{ArgTypeAny}} eps, {{ArgTypeAny}} sigma, {{ArgTypeAny}} thickness)resistor====
''ExampleSYNTAX: penetrable_surface_groupresistor("Penet_1"{{ArgTypeString}} label,2.2{{ArgTypeAny}} line_object,0.0001{{ArgTypeAny}} offset, 1{{ArgTypeAny}} resistance)''
DescriptionEXAMPLE: Creates a penetrable surface group in [[EM.Terrano]]. If the penetrable surface group 'label' already existsresistor("Res_1", the group is activated."Line_1",25,50)''
====penetrable_volume_group({{ArgTypeString}} DESCRIPTION: Creates a resistor in [[EM.Tempo]]. If the resistor 'label' already exists, {{ArgTypeAny}} eps, {{ArgTypeAny}} sigma)====its properties are modified.
''Example: penetrable_volume_group("Vol_Penet_1",2.2,0.0001)''====revolve====
DescriptionSYNTAX: Creates a penetrable volume group in [[EM.Terrano]]. If the penetrable volume group 'revolve({{ArgTypeString}} label' already exists, the group is activated.{{ArgTypeString}} object, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} uX, {{ArgTypeAny}} uY, {{ArgTypeAny}} uZ, {{ArgTypeAny}} rot_angle)
====terrain_groupEXAMPLE: ''revolve({{ArgTypeString}} label"Rev1", {{ArgTypeAny}} eps"Line_1", {{ArgTypeAny}} sigma0,0,0,0,0,1,360)====''
''ExampleDESCRIPTION: terrain_group("Terrain_1",5Creates or modifies a revolution object from a specified object.0If modifying an existing revolution object,0the pre-existing primitive object is used.0001(x0,y0,z0)''specifies the center of revolution, and (uX,uY,uZ) specifies the revolution axis. The revolution angle "rot_angle" is given in degrees.
Description: Creates an terrain surface group in [[EM.Terrano]]. If the terrain surface group 'label' already exists, the group is activated.====rosen====
====base_point_groupSYNTAX: rosen({{ArgTypeStringArgTypeReal}} labelx, {{ArgTypeReal}} y, {{ArgTypeReal}} a, {{ArgTypeReal}} b)====
EXAMPLE: ''Example: base_point_setrosen("BP_Set_1"0.5,0,1,2)''
DescriptionDESCRIPTION: Creates a base point set in [[EM.Terrano]]. If Computes and returns the base point set group 'label' already exists, the group is activatedRosenbrock function: (a-x)**2 + b*(y-x**2)**2.
====virtual_group({{ArgTypeString}} label)rotate====
''ExampleSYNTAX: virtual_grouprotate("VIR_1"{{ArgTypeString}} object, {{ArgTypeAny}} rot_angle_degree, {{ArgTypeAny}} rot_axis_x, {{ArgTypeAny}} rot_axis_y, {{ArgTypeAny}} rot_axis_z)''
DescriptionEXAMPLE: Creates a virtual object group in [[EM.Terrano]]. If the virtual group 'label' already existsrotate("pyramid_1", the group is activated.45,1,1,0)''
====impedance_surface_groupDESCRIPTION: Rotates an object about a line passing through its LCS center and aligned along the specified direction vector ({{ArgTypeString}} label, {{ArgTypeAny}} z_real, {{ArgTypeAny}} z_imagrot_axis)====by the specified angle.
''Example: impedance_surface_group("IMP_1",100,-100)''====roughen====
DescriptionSYNTAX: Creates a impedance_surface group in [[EM.Illumina]]. If the impedance surface group 'roughen({{ArgTypeString}} label' already exists, the group is activated.{{ArgTypeString}} object, {{ArgTypeAny}} rms_height, {{ArgTypeAny}} correl_length)
====conductive_sheet_groupEXAMPLE: ''roughen({{ArgTypeString}} label"Rect_1", {{ArgTypeAny}} sigma1, {{ArgTypeAny}} thickness5)====''
''ExampleDESCRIPTION: conductive_sheet_group("Cond_1",100, 0Roughens the surface of the specified object based on the specified RMS height and correlation length.01)''
Description: Creates a conductive sheet group in [[EM.Picasso]]. If the conductive sheet group 'label' already exists, the group is activated.====run_analysis====
====charge_groupSYNTAX: run_analysis({{ArgTypeString}} label, {{ArgTypeAny}} density)====
''ExampleDESCRIPTION: charge_group("Charge_1",-1e-5)''Runs a simulation in the current active [[EM.Cube]] computational module.
Description: Creates a volume charge source group in [[EM.Ferma]]. If the charge group 'label' already exists, the group is activated.====save_data====
====magnet_groupSYNTAX: save_data({{ArgTypeString}} label, {{ArgTypeAny}} mu, {{ArgTypeAny}} Mx, {{ArgTypeAny}} My, {{ArgTypeAny}} Mzdirectory_name)====
EXAMPLE: ''Example: magnet_groupsave_data("Magnet_1Simulation_Data",1,0,0,100)''
DescriptionDESCRIPTION: Creates a permanent magnet source group in Saves [[EM.FermaCube]]. If the magnet group 'label' already exists, s output simulation data files under the group is activatedspecified directory.
====volume_current_group({{ArgTypeString}} label, {{ArgTypeAny}} Jx, {{ArgTypeAny}} Jy, {{ArgTypeAny}} Jz)sawtooth====
''ExampleSYNTAX: volume_current_groupsawtooth("Magnet_1",0,0,1e6{{ArgTypeReal}} x)''
DescriptionEXAMPLE: Creates a volume current source group in [[EM.Ferma]]. If the volume current group 'label' already exists, the group is activatedsawtooth(0.5)''
DESCRIPTION: Computes and returns the ascending periodic sawtooth function of period T ====wire_current_group({{ArgTypeString}} label2, {{ArgTypeAny}} current, {{ArgTypeAny}} wire_radius)===oscillating between two values +1 and -1 and having a zero value of at x =0.
''Example: wire_current_group("Magnet_1",1,0.5)''====scale====
DescriptionSYNTAX: Creates a wire current source group in [[EM.Ferma]]. If the wire current group 'label' already existsscale({{ArgTypeString}} object, the group is activated.{{ArgTypeAny}} scale_factor)
== EM.CubeEXAMPLE: ''scale("pyramid_1",2)''s Python Functions for Source & Lumped Device Definition ==
====lumped_src({{ArgTypeString}} label, {{ArgTypeAny}} line_object, {{ArgTypeAny}} offset, {{ArgTypeAny}} polarity[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance])====DESCRIPTION: Scales an object by the specified scale factor.
''Example: lumped_src("LS_1","Line_1",50,0)''====select_module====
DescriptionSYNTAX: Creates a lumped source in [[EM.Tempo]]. If the lumped source 'label' already exists, its properties are modified.select_module({{ArgTypeString}} module_name)
====distributed_srcEXAMPLE: ''select_module({{ArgTypeString}} label, {{ArgTypeAny}} rect_object, {{ArgTypeAny}} field_dir, {{ArgTypeAny}} profile"[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance[EM.Tempo]]")====''
''ExampleDESCRIPTION: distributed_src("DS_1","Rect_1","+y","uniform")'Selects and sets [[EM.Cube]]'s active module.
Description: Creates a distributed source in [[EM.Tempo]]. If the distributed source 'label' already exists, its properties are modified.====set_bandwidth====
====microstrip_srcSYNTAX: set_bandwidth({{ArgTypeString}} label, {{ArgTypeAny}} rect_object, {{ArgTypeAny}} height, {{ArgTypeAny}} edge[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance]value)====
EXAMPLE: ''Example: microstrip_srcset_bandwidth("MS_1","Rect_1",1.5,"+x"1e9)''
DescriptionDESCRIPTION: Creates a microstrip port source in Sets [[EM.TempoCube]]. If the microstrip port 'label' already exists, its properties are modifieds frequency bandwidth.
====cpw_src({{ArgTypeString}} label, {{ArgTypeAny}} rect_object, {{ArgTypeAny}} spacing, {{ArgTypeAny}} edge[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance])set_boundary_conditions====
''ExampleSYNTAX: cpw_srcset_boundary_conditions("CPW_1"{{ArgTypeString}} xn_type,"Rect_1"{{ArgTypeString}} xp_type,1.5{{ArgTypeString}} yn_type,"+x"{{ArgTypeString}} yp_type, {{ArgTypeString}} zn_type, {{ArgTypeString}} zp_type)''
DescriptionEXAMPLE: Creates a CPW port source in [[EM.Tempo]]. If the CPW port 'label' already existsset_domain_offset_lambda("pml", its properties are modified."pml","pml","pml","pec","pml")''
====coaxial_src({{ArgTypeString}} label, {{ArgTypeAny}} cylinder_object, {{ArgTypeAny}} outer_radius, {{ArgTypeAny}} edgeDESCRIPTION: Sets [[EM.Tempo]]'s domain boundary conditions domain offset on the &plusmn;X, {{ArgTypeAny}} amplitude&plusmn;Y and &plusmn;Z boundary walls. The options are "pec", {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance])===="pmc" and "pml".
''Example: coaxial_src("COAX_1","Cyl_1",1.5,"+z")''====set_domain_offset====
DescriptionSYNTAX: Creates a coaxial port source in [[EM.Tempo]]. If the coaxial port 'label' already existsset_domain_offset({{ArgTypeAny}} dxn_offset, its properties are modified.{{ArgTypeAny}} dxp_offset, {{ArgTypeAny}} dyn_offset, {{ArgTypeAny}} dyp_offset, {{ArgTypeAny}} dzn_offset, {{ArgTypeAny}} dzp_offset)
====waveguide_srcEXAMPLE: ''set_domain_offset({{ArgTypeString}} label20, {{ArgTypeAny}} box_object20, {{ArgTypeAny}} offset20, {{ArgTypeAny}} is_negative[20, {{ArgTypeAny}} amplitude0, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance]10)====''
''ExampleDESCRIPTION: waveguide_src("WG_1"Sets the domain offset values along the &plusmn;X,"Box_1",50,0)''&plusmn;Y and &plusmn;Z directions in project units.
Description: Creates a waveguide port source in [[EM.Tempo]]. If the waveguide port 'label' already exists, its properties are modified.====set_domain_offset_lambda====
====wire_gap_srcSYNTAX: set_domain_offset_lambda({{ArgTypeString}} label, {{ArgTypeAny}} line_objectdxn_offset, {{ArgTypeAny}} offsetdxp_offset, {{ArgTypeAny}} polarity[dyn_offset, {{ArgTypeAny}} amplitudedyp_offset, {{ArgTypeAny}} phasedzn_offset, {{ArgTypeAny}} resistance]dzp_offset)====
EXAMPLE: ''Example: wire_gap_srcset_domain_offset_lambda("WIG_1"0.1,"Line_1"0.1,500.1,0.1,0,0.25)''
DescriptionDESCRIPTION: Creates a wire gap circuit source in [[EM.Libera]]. If Sets the wire gap source 'label' already existsdomain offset values along the &plusmn;X, its properties are modified&plusmn;Y and &plusmn;Z directions in free-space wavelengths.
====rect_gap_src({{ArgTypeString}} label, {{ArgTypeAny}} rect_object, {{ArgTypeAny}} offset, {{ArgTypeAny}} polarity[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance])set_frequency====
''ExampleSYNTAX: rect_gap_srcset_frequency("GAP_1","Rect_1",0,0{{ArgTypeAny}} value)''
DescriptionEXAMPLE: Creates a strip gap circuit source in [[EM''set_frequency(2.Picasso]] or [[EM.Libera]]. If the strip gap source 4e9)'label' already exists, its properties are modified.
====probe_gap_src({{ArgTypeString}} label, {{ArgTypeAny}} via_object, {{ArgTypeAny}} polarityDESCRIPTION: Sets [, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance[EM.Cube]])===='s center frequency.
''Example: probe_gap_src("Probe_1","Via_1",0)''====set_lcs_link====
DescriptionSYNTAX: Creates a probe gap circuit source in [[EM.Picasso]]. If the probe gap source 'label' already existsset_lcs_link({{ArgTypeString}} object, its properties are modified.{{ArgTypeString}} lcs_obj, {{ArgTypeAny}} x_off, {{ArgTypeAny}} y_off, {{ArgTypeAny}} z_off)
====wave_portEXAMPLE: ''set_lcs_link({{ArgTypeString}} label"pyramid_1", {{ArgTypeAny}} rect_object"box_1", {{ArgTypeAny}} offset50, {{ArgTypeAny}} is_negative[50, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance]0)====''
''ExampleDESCRIPTION: wave_port("WP_1","Rect_1",0,0)''Links the LCS of the first object to the LCS of the second object by the specified offset values along the three axes.
Description: Creates a scattering wave port source in [[EM.Picasso]] or [[EM.Libera]]. If the wave port 'label' already exists, its properties are modified.====set_periodic====
====short_dipoleSYNTAX: set_periodic({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} length, {{ArgTypeAny}} uX, {{ArgTypeAny}} uY, {{ArgTypeAny}} uZis_periodic, {{ArgTypeAny}} amplitudespacingX, {{ArgTypeAny}} phasespacingY)====
EXAMPLE: ''Example: wave_portset_periodic("SD_1"1,0,050,50,3,0,0,1,1,0)''
DescriptionDESCRIPTION: Creates a Hertzian short dipole source. If Designates the short dipole source 'label' already exists, its properties are modifiedphysical structure as periodic and sets the periods along the X and Y directions.
====planewave({{ArgTypeString}} label, {{ArgTypeAny}} theta, {{ArgTypeAny}} phi, {{ArgTypeAny}} polarization)set_rot====
''ExampleSYNTAX: planewaveset_rot("PW_1"{{ArgTypeString}} object,180{{ArgTypeAny}} rot_x,0{{ArgTypeAny}} rot_y,"tm"{{ArgTypeAny}} rot_z)''
DescriptionEXAMPLE: Creates a plane wave source. If the plane wave source 'label' already existsset_rot("pyramid_1", its properties are modified.0,0,45)''
====gauss_beam({{ArgTypeString}} label, {{ArgTypeAny}} theta, {{ArgTypeAny}} phi, {{ArgTypeAny}} polarization, {{ArgTypeAny}} focus_x, {{ArgTypeAny}} focus_y, {{ArgTypeAny}} focus_z, {{ArgTypeAny}} radius, {{ArgTypeAny}} p_mode, {{ArgTypeAny}} q_mode)====DESCRIPTION: Sets the three rotation angles of an object.
''Example: gauss_beam("PW_1",180,0,"tm",0,0,0,20,0,0)''====set_rot_link====
DescriptionSYNTAX: Creates a Gaussian beam source in [[EM.Tempo]]. If the Gaussian beam source 'label' already existsset_rot_link({{ArgTypeString}} object, its properties are modified.{{ArgTypeString}} lcs_obj, {{ArgTypeAny}} x_off_deg, {{ArgTypeAny}} y_off_deg, {{ArgTypeAny}} z_off_deg)
====huygens_srcEXAMPLE: ''set_rot_link({{ArgTypeString}} label"pyramid_1", {{ArgTypeAny}} filename["box_1", {{ArgTypeAny}} set_lcs0, {{ArgTypeAny}} polarization0, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} x_rot, {{ArgTypeAny}} y_rot, {{ArgTypeAny}} z_rot]45)====''
''ExampleDESCRIPTION: huygens_src("HS_1","Huygens_1Links the rotation angles of the LCS of the first object to the rotation angles of the LCS of the second object by the specified angle offset values in degrees along the three axes.HUY",1,100,100,0,0,0,0)''
Description: Creates a Huygens source. If the Huygens source 'label' already exists, its properties are modified.====set_stackup_order====
====transmitter_setSYNTAX: set_stackup_order("THS", {{ArgTypeString}} labellabel_1, {{ArgTypeAnyArgTypeString}} base_point_set[label_2, {{ArgTypeAny}} pattern_file..., {{ArgTypeAnyArgTypeString}} rot_xlabel_n, {{ArgTypeAny}} rot_y, {{ArgTypeAny}} rot_z"BHS")====
EXAMPLE: ''Example: transmitter_setbackground_layer("TX_1THS","PT_1Top_Layer","DPL_STD.RADMid_Layer",0"Bottom_Layer",90,0"BHS")''
DescriptionDESCRIPTION: Creates a transmitter set in Sets the hierarchy of [[EM.TerranoPicasso]]'s background layer stackup from top to bottom. If The sequence should always start with "THS" standing for the transmitter set 'label' already exists, its properties are modifiedtop half-space and must end in "BHS" standing for the bottom half-space. All the intermediate finite-thickness substrate layers must be included and listed in the right order.
====resistor({{ArgTypeString}} label, {{ArgTypeAny}} line_object, {{ArgTypeAny}} offset, {{ArgTypeAny}} resistance)set_units====
''ExampleSYNTAX: resistorset_units("Res_1","Line_1",25,50{{ArgTypeString}} units)''
DescriptionEXAMPLE: Creates a resistor in [[EM.Tempo]]. If the resistor 'label' already exists, its properties are modified.set_units("meter")''
====capacitor({{ArgTypeString}} label, {{ArgTypeAny}} line_object, {{ArgTypeAny}} offset, {{ArgTypeAny}} capacitance_pF)====DESCRIPTION: Sets [[EM.Cube]]'s project length units.
''Example: capacitor("Cap_1","Line_1",25,10)''====sgn====
DescriptionSYNTAX: Creates a capacitor in [[EM.Tempo]]. If the capacitor 'label' already exists, its properties are modified.sgn({{ArgTypeReal}} x)
====inductorEXAMPLE: ''sgn({{ArgTypeString}} label, {{ArgTypeAny}} line_object, {{ArgTypeAny}} offset, {{ArgTypeAny}} inductance_nH-1.0)====''
''ExampleDESCRIPTION: inductor("Cap_1","Line_1",25Computes and returns the signum function: 1 if x>0,10)''-1 if x<0.
Description: Creates a inductor in [[EM.Tempo]]. If the inductor 'label' already exists, its properties are modified.====short_dipole====
====diodeSYNTAX: short_dipole({{ArgTypeString}} label, {{ArgTypeAny}} line_objectx0, {{ArgTypeAny}} polarityy0, {{ArgTypeAny}} is_fAz0, {{ArgTypeAny}} temperature_Klength, {{ArgTypeAny}} ideality_factoruX, {{ArgTypeAny}} uY, {{ArgTypeAny}} uZ, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase)====
EXAMPLE: ''Example: diodeshort_dipole("Diode_1SD_1","Line_1"0,250,50,3,0,100,3001,1,0)''
DescriptionDESCRIPTION: Creates a diode in [[EM.Tempo]]Hertzian short dipole source. If the diode short dipole source 'label' already exists, its properties are modified.
== EM.Cube's Python Functions for Observable Definition ==sigmoid====
====port_definition_defaultSYNTAX: sigmoidnc({{ArgTypeStringArgTypeReal}} labelx, {{ArgTypeReal}} a)====
EXAMPLE: ''Example: port_definition_defaultsigmoid("PD_1"0.5,1)''
DescriptionDESCRIPTION: Creates a default port definition observable. If Computes and returns the observable 'label' already exists, its properties are modifiedsigmoid function of slope a: 2/(1 + exp(-a*x)) - 1.
====port_definition_custom({{ArgTypeString}} label, ({{ArgTypeString}} port_1_src_1, {{ArgTypeString}} port_1_src_2, ..., {{ArgTypeString}} port_1_impedance), ({{ArgTypeString}} port_2_src_1, {{ArgTypeString}} port_2_src_2, ..., {{ArgTypeString}} port_2_impedance), ...)sinc====
''ExampleSYNTAX: port_definition_customsinc("PD_1",("LS_1","LS_2",50),,("LS_3","LS_4",50){{ArgTypeReal}} x)''
DescriptionEXAMPLE: Creates a custom port definition observable. If the observable 'label' already exists, its properties are modifiedsinc(0.5)''
====farfieldDESCRIPTION: Computes and returns the sinc function: sin({{ArgTypeString}} label, {{ArgTypeAny}} theta_incr, {{ArgTypeAny}} phi_incrpi*x)====/(pi*x).
''Example: farfield("FF_1",1,1)''====slice====
DescriptionSYNTAX: Creates a far-field radiation pattern observable. If the observable 'label' already existsslice({{ArgTypeString}} object, its properties are modified.{{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} uX, {{ArgTypeAny}} uY, {{ArgTypeAny}} uZ)
====rcs_bistaticEXAMPLE: ''slice({{ArgTypeString}} label"Rect_1", {{ArgTypeAny}} theta_incr, {{ArgTypeAny}} phi_incr5)====''
''ExampleDESCRIPTION: rcs_bistatic("RCS_1",1,1)''Slices the specified object into two parts using the specified plane given by the point coordinates and normal vector coordinates.
Description: Creates a bistatic RCS observable. If the observable 'label' already exists, its properties are modified.====slot_group====
====current_distSYNTAX: slot_group({{ArgTypeString}} label)====
EXAMPLE: ''Example: current_distslot_group("CD_1PMC_1")''
DescriptionDESCRIPTION: Creates a slot trace group in the current distribution observablemodule. If the observable slot trace group 'label' already exists, its properties are modifiedthe group is activated.
====field_sensor({{ArgTypeString}} label, {{ArgTypeAny}} dir_coordinate, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} xSize, {{ArgTypeAny}} ySize, {{ArgTypeAny}} zSize, {{ArgTypeAny}} xSamples, {{ArgTypeAny}} ySamples, {{ArgTypeAny}} zSamples)solution_plane====
''ExampleSYNTAX: field_sensorsolution_plane("FS_1"{{ArgTypeString}} label,"z"{{ArgTypeAny}} field_sensor_label,0,0,0,100,100,0,25,25,0{{ArgTypeAny}} is_quasi)''
DescriptionEXAMPLE: Creates a near-field sensor observable. If the observable 'label' already existssolution_plane("FI_1", its properties are modified."FS_1",1)''
====field_sensor_grid({{ArgTypeString}} DESCRIPTION: Creates a 2D solution plane observable in [[EM.Ferma]]. If the observable 'label' already exists, {{ArgTypeAny}} dir_coordinate, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0)====its properties are modified.
''Example: field_sensor_grid("FS_1","z",0,0,0)''====sphere====
DescriptionSYNTAX: Creates a near-field sensor observable in sphere({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius[[EM.Tempo, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle]] or [[EM.Ferma]]. If the observable 'label' already exists, its properties are modified.)
====field_probeEXAMPLE: ''sphere({{ArgTypeString}} label"Sphere_1", {{ArgTypeAny}} x00, {{ArgTypeAny}} y00, {{ArgTypeAny}} z00,10,0,180)====''
''ExampleDESCRIPTION: field_probe("FS_1"Draws a sphere object in the project workspace under the currently activated Material Group node,0,0,50)or modifies the sphere named 'label'if it already exists. The arguments start_angle and end_angle are in degrees and specify a sweep about the sphere's azimuth axis.
Description: Creates a temporal field probe observable in [[EM.Tempo]] or [[EM.Ferma]]. If the observable 'label' already exists, its properties are modified.====spiral_curve====
====receiver_setSYNTAX: spiral_curve({{ArgTypeString}} label, {{ArgTypeAny}} base_point_set[x0, {{ArgTypeAny}} pattern_filey0, {{ArgTypeAny}} rot_xz0, {{ArgTypeAny}} rot_yradius_inner, {{ArgTypeAny}} rot_zradius_outer, {{ArgTypeAny}} nturns, {{ArgTypeAny}} spiral_dir, {{ArgTypeAny}} is_dual)====
EXAMPLE: ''Example: receiver_setspiral_curve("TX_1Spiral _1","PT_1"0,"DPL_STD.RAD"0,0,9010,50,5,0,0)''
DescriptionDESCRIPTION: Creates Draws a receiver set spiral curve object in [[EM.Terrano]]. If the receiver set project workspace under the currently activated material group node, or modifies the spiral curve named 'label' if it already exists. If the Boolean parameter "spiral_dir" is 1, its properties are modifiedthe spiral curve will be drawn counter-clockwise. If the Boolean parameter "is_dual" is 1, a dual-arm spiral curve will be drawn.
====huygens_surface({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2, {{ArgTypeAny}} xSamples, {{ArgTypeAny}} ySamples, {{ArgTypeAny}} zSamples)spiral_strip====
''ExampleSYNTAX: huygens_surfacespiral_strip("HS_1"{{ArgTypeString}} label,-10{{ArgTypeAny}} x0,-10{{ArgTypeAny}} y0,-10{{ArgTypeAny}} z0,10{{ArgTypeAny}} width,10{{ArgTypeAny}} radius_inner,10{{ArgTypeAny}} radius_outer,40{{ArgTypeAny}} nturns,40{{ArgTypeAny}} spiral_dir,40{{ArgTypeAny}} is_dual)''
DescriptionEXAMPLE: Creates a Huygens surface observable. If the observable 'label' already existsspiral_strip("Spiral _1", its properties are modified.0,0,0,10,50,5,0,0)''
====huygens_surface_grid({{ArgTypeString}} DESCRIPTION: Draws a spiral strip object in the project workspace under the currently activated material group node, or modifies the spiral strip named 'label' if it already exists. If the Boolean parameter "spiral_dir" is 1, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2the spiral curve will be drawn counter-clockwise. If the Boolean parameter "is_dual" is 1, {{ArgTypeAny}} z2)====a dual-arm spiral curve will be drawn.
''Example: huygens_surface_grid("HS_1",-10,-10,-10,10,10,10)''====spline_fit====
DescriptionSYNTAX: Creates a Huygens surface observable in [[EM.Tempo]]. If the observable 'label' already exists, its properties are modified.spline_fit({{ArgTypeString}} object)
====voltage_integralEXAMPLE: ''spline_fit({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2"Poly_1")====''
''ExampleDESCRIPTION: voltage_integral("FI_1"Applies spline fit transformation on a specified polymesh,0,0,-10,0,0,10)''polyline or polystrip object.
Description: Creates a voltage integral observable in [[EM.Ferma]]. If the observable 'label' already exists, its properties are modified.====spline2====
====current_integralSYNTAX: spline2({{ArgTypeStringArgTypeReal}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2x)====
EXAMPLE: ''Example: current_integralspline2("FI_1",-10,-10,0,10,10,1.0)''
DescriptionDESCRIPTION: Creates a current integral observable in [[EM.Ferma]]. If Computes and returns the observable 'label' already exists, its properties are modifiedquadratic B-spline function.
====conduction_current_integral({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2)spline3====
''ExampleSYNTAX: conduction_current_integralspline3("FI_1",-10,-10,0,10,10,0{{ArgTypeReal}} x)''
DescriptionEXAMPLE: Creates a conduction current integral observable in [[EM.Ferma]]. If the observable 'label' already exists, its properties are modifiedspline3(1.0)''
====capacitance({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2, {{ArgTypeAny}} x3, {{ArgTypeAny}} y3, {{ArgTypeAny}} z3, {{ArgTypeAny}} x4, {{ArgTypeAny}} y4, {{ArgTypeAny}} z4)====DESCRIPTION: Computes and returns the cubic B-spline function.
''Example: capacitance("FI_1",-10,-10,5,10,10,10,0,0,-10,0,0,10)''====sqr_wave====
DescriptionSYNTAX: Creates a capacitance integral observable in [[EM.Ferma]]. If the observable 'label' already exists, its properties are modified.sqr_wave({{ArgTypeReal}} x)
====inductanceEXAMPLE: ''sqr_wave({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2, {{ArgTypeAny}} x3, {{ArgTypeAny}} y3, {{ArgTypeAny}} z3, {{ArgTypeAny}} x4, {{ArgTypeAny}} y4, {{ArgTypeAny}} z40.5)====''
''ExampleDESCRIPTION: inductance("FI_1",0,0,-10,10,0,10,Computes and returns the periodic square wave function of period T = 2.5,oscillating between two values +1 and -2.5,1 and having a value of +1 at x = 0,7.5,2.5,0)''
Description: Creates a inductance integral observable in [[EM.Ferma]]. If the observable 'label' already exists, its properties are modified.====sqr2====
====resistanceSYNTAX: sqr2({{ArgTypeStringArgTypeReal}} labelx, {{ArgTypeAnyArgTypeReal}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2, {{ArgTypeAny}} x3, {{ArgTypeAny}} y3, {{ArgTypeAny}} z3, {{ArgTypeAny}} x4, {{ArgTypeAny}} y4, {{ArgTypeAny}} z4y)====
EXAMPLE: ''Example: resistancesqr2("FI_1",0,0,-10,0,0,10,-10,-10,0,10,10,01)''
DescriptionDESCRIPTION: Creates a resistance integral observable in [[EM.Ferma]]. If Computes and returns the observable 'label' already exists, its properties are modifiedsum of squares of x and y: x**2 + y**2.
====flux_electric({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2)sqr3====
''ExampleSYNTAX: flux_electricsqr2("FI_1"{{ArgTypeReal}} x,-10{{ArgTypeReal}} y,-10,5,10,10,10{{ArgTypeReal}} z)''
DescriptionEXAMPLE: Creates an electric flux integral observable in [[EM.Ferma]]. If the observable 'label' already existssqr2(0, its properties are modified.1,2)''
====flux_magnetic({{ArgTypeString}} labelDESCRIPTION: Computes and returns the sum of squares of x, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2)====y and z: x**2 + y**2 + z**2.
''Example: flux_magnetic("FI_1",0,0,-10,10,0,10)''====sqrt2====
DescriptionSYNTAX: Creates a magnetic flux integral observable in [[EM.Ferma]]. If the observable 'label' already existssqrt2({{ArgTypeReal}} x, its properties are modified.{{ArgTypeReal}} y)
====energy_electricEXAMPLE: ''sqrt2({{ArgTypeString}} label0, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z21)====''
''ExampleDESCRIPTION: energy_electricComputes and returns the radius of the 2D point ("FI_1"x,-10,-10,-10,10,10,10y): sqrt(x**2 + y**2)''.
Description: Creates an electric energy integral observable in [[EM.Ferma]]. If the observable 'label' already exists, its properties are modified.====sqrt3====
====energy_magneticSYNTAX: sqrt3({{ArgTypeStringArgTypeReal}} labelx, {{ArgTypeAnyArgTypeReal}} x1y, {{ArgTypeAnyArgTypeReal}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2z)====
EXAMPLE: ''Example: energy_magneticsqrt3("FI_1",-10,-10,-10,100,101,102)''
DescriptionDESCRIPTION: Creates a magnetic energy integral observable in [[EM.Ferma]]. If Computes and returns the observable 'label' already existsradius of the 3D point (x, its properties are modifiedy,z): sqrt(x**2 + y**2 + z**2).
====ohmic_loss({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2)step====
''ExampleSYNTAX: ohmic_lossstep("FI_1",-10,-10,-10,10,10,10{{ArgTypeReal}} x)''
DescriptionEXAMPLE: Creates an ohmic loss integral observable in [[EM.Ferma]]. If the observable 'label' already exists, its properties are modifiedstep(1.0)''
====solution_plane({{ArgTypeString}} labelDESCRIPTION: Computes and returns the unit step function: 1 if x>0, {{ArgTypeAny}} field_sensor_label, {{ArgTypeAny}} is_quasi)====0 if x<0.
''Example: solution_plane("FI_1","FS_1",1)''====strip_sweep====
DescriptionSYNTAX: Creates a 2D solution plane observable in [[EM.Ferma]]. If the observable 'label' already existsstrip_sweep({{ArgTypeString}} object, its properties are modified.{{ArgTypeAny}} width)
== EM.CubeEXAMPLE: ''strip_sweep("Curve_1",5)''s Python Functions for Simulation-Related Functions & Operations ==
====select_module({{ArgTypeString}} module_name)====DESCRIPTION: Creates a strip version of a given curve object.
''Example: select_module("[[EM.Tempo]]")''====subtract====
DescriptionSYNTAX: Selects and sets [[EM.Cube]]'s active module.subtract({{ArgTypeString}} label, {{ArgTypeString}} object_1, {{ArgTypeString}} object_2)
====set_unitsEXAMPLE: ''subtract({{ArgTypeString}} units"Subtract_Object","Rect_Strip1","Rect_Strip2")====''
DESCRIPTION: Creates a Boolean object named 'label'Example: set_units("meter")by subtracting object_2 from object_1. An error will be thrown if a Boolean object named 'label'already exists.
Description: Sets [[EM.Cube]]'s project length units.====superquad====
====set_frequencySYNTAX: superquad({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} diam_x, {{ArgTypeAny}} diam_y, {{ArgTypeAny}} valueorder)====
EXAMPLE: ''Example: set_frequencysuperquad(2.4e9"SuperQuad_1",0,0,0,50,20,4)''
DescriptionDESCRIPTION: Sets [[EM.Cube]]Draws a super-quadratic curve object in the project workspace under the currently activated material group node, or modifies the super-quadratic curve named 's center frequencylabel' if it already exists. If order = 2, the curve reduces to an ellipse. Higher order makes the round edges sharper. An infinite order reduces the curve to a rectangle.
====set_bandwidth({{ArgTypeAny}} value)taper_strip====
''ExampleSYNTAX: set_bandwidthtaper_strip(1e9{{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} base_width, {{ArgTypeAny}} top_width, {{ArgTypeAny}} length, {{ArgTypeAny}} is_expo)''
DescriptionEXAMPLE: Sets [[EM.Cube]]'s frequency bandwidth.'taper_strip("ts_1",0,0,0,50,100,80,1)''
====background_layer({{ArgTypeString}} DESCRIPTION: Draws a taper strip object in the project workspace under the currently activated material group node, or modifies the taper strip object named 'label' if it already exists. If the Boolean parameters "is_expo" is 1, {{ArgTypeAny}} eps, {{ArgTypeAny}} sigma, {{ArgTypeAny}} mu, {{ArgTypeAny}} thickness)====an exponential taper will be drawn.
''Example: background_layer("Mid_Layer",3.3,0.001,1,1.5)''====terrain_group====
DescriptionSYNTAX: Adds a new substrate layer to [[EM.Picasso]]'s background layer stackup.terrain_group({{ArgTypeString}} label, {{ArgTypeAny}} eps, {{ArgTypeAny}} sigma)
====delete_background_layerEXAMPLE: ''terrain_group({{ArgTypeString}} label"Terrain_1",5.0,0.0001)====''
''ExampleDESCRIPTION: delete_background_layer("Mid_Layer")Creates an terrain surface group in [[EM.Terrano]]. If the terrain surface group 'label'already exists, the group is activated.
Description: Deletes a finite-thickness substrate layer from [[EM.Picasso]]'s background layer stackup.====thinwire_group====
====set_stackup_orderSYNTAX: thinwire_group("THS", {{ArgTypeString}} label_1label, {{ArgTypeStringArgTypeAny}} label_2, ..., {{ArgTypeString}} label_n, "BHS"radius)====
EXAMPLE: ''Example: background_layerthinwire_group("THSThinwire_1","Top_Layer","Mid_Layer","Bottom_Layer","BHS"4)''
DescriptionDESCRIPTION: Sets the hierarchy of [[EM.Picasso]]'s background layer stackup from top to bottom. The sequence should always start with "THS" standing for the top half-space and must end Creates a Thinwire material group in "BHS" standing for the bottom half-spacecurrent module. All If the intermediate finite-thickness substrate layers must be included and listed in thin wire group 'label' already exists, the right ordergroup is activated.
====global_ground({{ArgTypeAny}} ground_on, {{ArgTypeAny}} eps, {{ArgTypeAny}} sigma)torus====
''ExampleSYNTAX: global_groundtorus(1{{ArgTypeString}} label,3.3{{ArgTypeAny}} x0,0.001{{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius_major, {{ArgTypeAny}} radius_minor[, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle])''
DescriptionEXAMPLE: Set the state of [[EM.Terrano]]'s global ground and its material properties. A zero value for ground_on means to no global ground assumed at Z = 'torus("Torus_1",0. ,0,0,50,20)''
====delete({{ArgTypeString}} node_name)====DESCRIPTION: Draws an torus object in the project workspace under the currently activated material group node, or modifies the torus named 'label' if it already exists. The arguments start_angle and end_angle are in degrees and specify a sweep about the torus's azimuth axis.
''Example: delete("Box_1")''====translate_by====
DescriptionSYNTAX: Deletes a node name from the navigation tree. The node can be any geometric translate_by({{ArgTypeString}} object, source, observable or material group. {{ArgTypeReal}} x_dist, {{ArgTypeReal}} y_dist, {{ArgTypeReal}} z_dist)
====renameEXAMPLE: ''translate_by({{ArgTypeString}} new_label"MyObj", {{ArgTypeString}} old_label10,10,x)====''
''ExampleDESCRIPTION: rename("Box_2","Box_1")''Translates an object by the specified distances in each direction.
Description: Deletes a node name from the navigation tree. The node can be any geometric object, source, observable or material group. ====translate_to====
====zoom_extentsSYNTAX: translate_to({{ArgTypeString}} object, {{ArgTypeReal}} x_dest, {{ArgTypeReal}} y_dest, {{ArgTypeReal}} z_dest)====
DescriptionEXAMPLE: Zooms to fit the extents of the physical structure into the screen.''translate_to("MyObj",20,20,x2)''
====add_variable({{ArgTypeString}} var_name, {{ArgTypeAny}} value)====DESCRIPTION: Translates an object to the specified destination.
''Example: add_variable("MyVar",1)''====transmitter_set====
DescriptionSYNTAX: Adds a new variable to transmitter_set({{ArgTypeString}} label, {{ArgTypeAny}} base_point_set[[EM.Cube]]'s variable list., {{ArgTypeAny}} pattern_file, {{ArgTypeAny}} rot_x, {{ArgTypeAny}} rot_y, {{ArgTypeAny}} rot_z)
====run_analysisEXAMPLE: ''transmitter_set("TX_1","PT_1","DPL_STD.RAD",0,90,0)====''
DescriptionDESCRIPTION: Runs Creates a simulation transmitter set in the current active [[EM.CubeTerrano]] computational module. If the transmitter set 'label' already exists, its properties are modified.
====set_periodic({{ArgTypeAny}} is_periodic, {{ArgTypeAny}} spacingX, {{ArgTypeAny}} spacingY) tri====
''ExampleSYNTAX: set_periodictri(1,50,50{{ArgTypeReal}} x)''
DescriptionEXAMPLE: Designates the physical structure as periodic and sets the periods along the X and Y directions''tri(0.1)''
====save_data({{ArgTypeString}} directory_name) ====DESCRIPTION: Computes and returns the triangular window function: 1-|x| if x<1, 0 elsewhere.
''Example: save_data("Simulation_Data")''====tri_wave====
DescriptionSYNTAX: Saves [[EM.Cube]]'s output simulation data files under the specified directory.tri_wave({{ArgTypeReal}} x)
====plot_fileEXAMPLE: ''tri_wave({{ArgTypeString}} filename0.5) ====''
''ExampleDESCRIPTION: plot_file("D0Computes and returns the periodic triangular wave function of period T = 2, oscillating between two values +1 and -1 and having a value of +1 at x = 0.DAT")''
Description: Plots the contents of a specified data file in EM.Grid.====triangle_strip====
====meshSYNTAX: triangle_strip({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} side1, {{ArgTypeAny}} side2, {{ArgTypeAny}} angle)====
DescriptionEXAMPLE: Generates and displays the mesh of the physical structure.''triangle_strip("ts_1",0,0,0,50,100,90)''
====emtempo_mesh_settings({{ArgTypeAny}} cells_per_lambdaDESCRIPTION: Draws a triangle strip object in the project workspace under the currently activated material group node, {{ArgTypeAny}} ratio_contour, {{ArgTypeAny}} ratio_thin, {{ArgTypeAny}} ratio_abs)====or modifies the triangle strip object named 'label' if it already exists.
''Example: emtempo_mesh_settings(30,0.1,0.1,0.02)''====union====
DescriptionSYNTAX: Sets the parameters of [[EM.Tempo]]'s adaptive mesh generator.union({{ArgTypeString}} label, {{ArgTypeString}} object_1, {{ArgTypeString}} object_2)
====emillumina_mesh_settingsEXAMPLE: ''union({{ArgTypeAny}} cells_per_lambda"Union_Object","Rect_Strip1","Rect_Strip2")====''
DESCRIPTION: Creates a Boolean object named 'label'Example: emillumina_mesh_settings(30)by unioning object_1 and object_2. An error will be thrown if a Boolean object named 'label'already exists.
Description: Sets the parameters of [[EM.Illumina]]'s mesh generator.====virtual_group====
====empicasso_mesh_settingsSYNTAX: virtual_group({{ArgTypeAnyArgTypeString}} cells_per_lambdalabel)====
EXAMPLE: ''Example: empicasso_mesh_settingsvirtual_group(30"VIR_1")''
DescriptionDESCRIPTION: Sets the parameters of Creates a virtual object group in [[EM.PicassoTerrano]]. If the virtual group 's planar hybrid mesh generatorlabel' already exists, the group is activated.
====emlibera_mesh_settings({{ArgTypeAny}} cells_per_lambda)voltage_integral====
''ExampleSYNTAX: emlibera_mesh_settingsvoltage_integral(30{{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2)''
DescriptionEXAMPLE: Sets the parameters of [[EM.Libera]]'s mesh generator.'voltage_integral("FI_1",0,0,-10,0,0,10)''
====emferma_mesh_settings({{ArgTypeAny}} cell_size_xDESCRIPTION: Creates a voltage integral observable in [[EM.Ferma]]. If the observable 'label' already exists, {{ArgTypeAny}} cell_size_y, {{ArgTypeAny}} cell_size_z)====its properties are modified.
''Example: emferma_mesh_settings(0.5,0.5,0.5)''====volume_current_group====
DescriptionSYNTAX: Sets the parameters of [[EM.Ferma]]'s fixed-cell mesh generator.volume_current_group({{ArgTypeString}} label, {{ArgTypeAny}} Jx, {{ArgTypeAny}} Jy, {{ArgTypeAny}} Jz)
====emterrano_mesh_settingsEXAMPLE: ''volume_current_group({{ArgTypeAny}} edge_length"Magnet_1", {{ArgTypeAny}} angle_tol0,0,1e6)====''
DESCRIPTION: Creates a volume current source group in [[EM.Ferma]]. If the volume current group 'label'Example: emterrano_mesh_settings(5already exists,10)''the group is activated.
Description: Sets the parameters of [[EM.Terrano]]'s facet mesh generator.====wave_port====
====cubecad_mesh_settingsSYNTAX: wave_port({{ArgTypeString}} label, {{ArgTypeAny}} rect_object, {{ArgTypeAny}} offset, {{ArgTypeAny}} is_negative[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} edge_lengthphase, {{ArgTypeAny}} angle_tolresistance])====
EXAMPLE: ''Example: cubecad_mesh_settingswave_port(5"WP_1","Rect_1",0,100)''
DescriptionDESCRIPTION: Sets Creates a scattering wave port source in [[EM.Picasso]] or [[EM.Libera]]. If the parameters of CubeCADwave port 's mesh generatorlabel' already exists, its properties are modified.
====emtempo_engine_settings({{ArgTypeString}} engine, {{ArgTypeAny}} power_threshhold, {{ArgTypeAny}} max_timesteps)waveguide_design====
''ExampleSYNTAX: emtempo_engine_settingswaveguide_design("single-precision"{{ArgTypeReal}} er,-50,20000{{ArgTypeReal}} freq_hertz)''
DescriptionEXAMPLE: Sets the parameters of [[EM.Tempo]]'s FDTD simulation engine'waveguide_design(1.0,2e9)''
====emterrano_engine_settingsDESCRIPTION: Computes and returns the minimum larger dimension ({{ArgTypeAny}} bounce_count, {{ArgTypeAny}} do_edge_diffraction, {{ArgTypeAny}} angular_resolution, {{ArgTypeAny}} ray_threshholdin meters)====of the cross section of a hollow rectangular waveguide above cutoff with a material filling of relative permittivity er at an operating frequency of freq_hertz.
''Example: emterrano_engine_settings(5,1,1,-100)''====waveguide_src====
DescriptionSYNTAX: Sets the parameters of waveguide_src({{ArgTypeString}} label, {{ArgTypeAny}} box_object, {{ArgTypeAny}} offset, {{ArgTypeAny}} is_negative[[EM.Terrano], {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance]'s SBR simulation engine.)
====empicasso_engine_settingsEXAMPLE: ''waveguide_src({{ArgTypeString}} matrix_solver"WG_1", {{ArgTypeAny}} error_tol"Box_1", {{ArgTypeAny}} max_iterations50,0)====''
DESCRIPTION: Creates a waveguide port source in [[EM.Tempo]]. If the waveguide port 'label'Example: empicasso_engine_settings("bicg"already exists,1e-3,1000)''its properties are modified.
Description: Sets the parameters of [[EM.Picasso]]'s planar MoM simulation engine.====wire_current_group====
====emillumina_engine_settingsSYNTAX: wire_current_group({{ArgTypeString}} enginelabel, {{ArgTypeAny}} is_fixed_iterationcurrent, {{ArgTypeAny}} error_tol, {{ArgTypeAny}} max_iterationswire_radius)====
EXAMPLE: ''Example: emillumina_engine_settingswire_current_group("ipoMagnet_1",1,0,1e-2,20.5)''
DescriptionDESCRIPTION: Sets the parameters of Creates a wire current source group in [[EM.IlluminaFerma]]. If the wire current group 's Physical Optics simulation enginelabel' already exists, the group is activated.
====emferma_engine_settings({{ArgTypeString}} matrix_solver, {{ArgTypeAny}} error_tol, {{ArgTypeAny}} max_iterations)wire_gap_src====
''ExampleSYNTAX: emferma_engine_settingswire_gap_src("bicg-stab"{{ArgTypeString}} label,1e-3{{ArgTypeAny}} line_object,100{{ArgTypeAny}} offset, {{ArgTypeAny}} polarity[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance])''
DescriptionEXAMPLE: Sets the parameters of [[EM.Ferma]]'s electrostatic and magnetostatic simulation engines.'wire_gap_src("WIG_1","Line_1",50,0)''
====emlibera_engine_settings_wmom({{ArgTypeString}} matrix_solverDESCRIPTION: Creates a wire gap circuit source in [[EM.Libera]]. If the wire gap source 'label' already exists, {{ArgTypeAny}} error_tol, {{ArgTypeAny}} max_iterations)====its properties are modified.
''Example: emlibera_engine_settings_wmom("bicg",1e-3,1000)''====zoom_extents====
DescriptionSYNTAX: Sets the parameters of [[EM.Libera]]'s wire MoM simulation engines.zoom_extents()
====emlibera_engine_settings_smom({{ArgTypeString}} matrix_solver, {{ArgTypeAny}} error_tol, {{ArgTypeAny}} max_iterations, {{ArgTypeAny}} ncpus, {{ArgTypeString}} formulation, {{ArgTypeAny}} alpha)====DESCRIPTION: Zooms to fit the extents of the physical structure into the screen.
''Example: emlibera_engine_settings_smom("bicg",1e-3,1000,4,"efie",0.4)''<br />
Description: Sets the parameters of [[EM.Libera]]'s surface MoM simulation engines.<hr>
<p>&nbsp;</p>[[Image:Top_icon.png|48px30px]] '''[[#Standard Python Functions Standard_Python_Operators | Back to the Top of the Page]]'''
[[Image:Back_icon.png|40px30px]] '''[[EM.Cube | Back to EM.Cube Main Page]]'''
28,333
edits