Changes

Glossary of EM.Cube's Python Functions

15,648 bytes added, 22:22, 11 June 2018
<table><tr><td>[[image:Cube-icon.png | link=Getting_Started_with_EM.Cube]] [[image:cad-ico.png | link=Building_Geometrical_Constructions_in_CubeCAD]] [[image:fdtd-ico.png | link=EM.Tempo]] [[image:prop-ico.png | link=EM.Terrano]] [[image:static-ico.png | link=EM.Ferma]] [[image:planar-ico.png | link=EM.Picasso]] [[image:metal-ico.png | link=EM.Libera]] [[image:po-ico.png | link=EM.Illumina]]</td><tr></table>[[Image:Back_icon.png|30px]] '''[[EM.Cube | Back to EM.Cube Main Page]]'''<br /> == Standard Python Operators == {| class="wikitable"!scope="col"| Syntax!scope="col"| Type!scope="col"| Description|-| style="width:80px;" | -p| style="width:150px;" | Std. Python operator| style="width:270px;" | negative of p|-| style="width:80px;" | p=q| style="width:150px;" | Std. Python operator| style="width:270px;" | p is equal to q|-| style="width:80px;" | p+q| style="width:150px;" | Std. Python operator| style="width:270px;" | sum of p and q|-| style="width:80px;" | p-q| style="width:150px;" | Std. Python operator| style="width:270px;" | difference p and q|-| style="width:80px;" | p*q| style="width:150px;" | Std. Python operator| style="width:270px;" | product of p and q|-| style="width:80px;" | p/q| style="width:150px;" | Std. Python operator| style="width:270px;" | quotient of p over q|-| style="width:80px;" | p**q| style="width:150px;" | Std. Python operator| style="width:270px;" | p to the power of q|-| style="width:80px;" | p%q| style="width:150px;" | Std. Python operator| style="width:270px;" | p modulus q|-| style="width:80px;" | p==q| style="width:150px;" | Std. Python operator| style="width:270px;" | p logically equal to q|-| style="width:80px;" | p>q| style="width:150px;" | Std. Python operator| style="width:270px;" | p is greater than q|-| style="width:80px;" | p>=q| style="width:150px;" | Std. Python operator| style="width:270px;" | p is greater than or equal to q|-| style="width:80px;" | p<q| style="width:150px;" | Std. Python operator| style="width:270px;" | p is less than q|-| style="width:80px;" | p<=q| style="width:150px;" | Std. Python operator| style="width:270px;" | p is less than or equal to q|-| style="width:80px;" | !p| style="width:150px;" | Std. Python operator| style="width:270px;" | Logical not p|-| style="width:80px;" | p and q| style="width:150px;" | Std. Python operator| style="width:270px;" | p Boolean and q|-| style="width:80px;" | p or q| style="width:150px;" | Std. Python operator| style="width:270px;" | p Boolean or q|-|} == Basic Mathematical Python Functions ==
{| class="wikitable"
| style="width:270px;" | Absolute value function
| style="width:270px;" | x if x>0, -x if x<0
|-
| ceiling(x)
| Std. Python function
| Ceiling function
| Nearest integer >= x
|-
| floor(x)
| Std. Python function
| Floor function
| Nearest integer <= x
|-
| pow(x,y)
| Std. Python function
| Factorial
| For for integer values of x: n! = n(n-1)(n-2)...3.2.1
|-
| max(x,y)
| -
|-
| asinhnp.arcsinh(x)
| Std. Python function
| Inverse hyperbolic sine function
| -
|-
| acoshnp.arccosh(x)
| Std. Python function
| Inverse hyperbolic cosine function
| -
|-
| atanhnp.arctanh(x)
| Std. Python function
| Inverse hyperbolic tangent function
| -
|-
| np.floor(x)
| Std. Python function
| Floor function
| nearest integer <= x
|}
| style="width:150px;" | Std. Python function
| style="width:270px;" | Sine and cosine integral functions
| style="width:270px;" | See see [https://en.wikipedia.org/wiki/Trigonometric_integral Trigonometric Integrals on Wikipedia.]
|-
| sp.fresnel(x)
| Std. Python function
| Sine and cosine Fresnel integral functions
| See see [https://en.wikipedia.org/wiki/Fresnel_integral Fresnel Integrals on Wikipedia.]
|-
| sp.ellipe(x)
| Std. Python function
| Elliptic function of the first kind
| See see [https://en.wikipedia.org/wiki/Elliptic_integral Elliptic Integrals on Wikipedia.]
|-
| sp.ellipk(x)
| Std. Python function
| Elliptic function of the second kind
| See see [https://en.wikipedia.org/wiki/Elliptic_integral Elliptic Integrals on Wikipedia.]
|-
| sp.expi(x)
| Std. Python function
| Exponential integral function
| See see [https://en.wikipedia.org/wiki/Exponential_integral Exponential Integrals on Wikipedia.]
|-
| sp.expn(n,x)
| Std. Python function
| Generalized exponential integral function of order n
| See see [https://en.wikipedia.org/wiki/Exponential_integral Exponential Integrals on Wikipedia.]
|-
| sp.erf(x)
| Std. Python function
| Error function
| See see [https://en.wikipedia.org/wiki/Error_function Error Function on Wikipedia.]
|-
| sp.erfc(x)
| Std. Python function
| Complementary error function
| See see [https://en.wikipedia.org/wiki/Error_function Error Function on Wikipedia.]
|-
| sp.gamma(x)
| Std. Python function
| Gamma function
| See see [https://en.wikipedia.org/wiki/Gamma_function Gamma Function on Wikipedia.]
|-
| sp.airy(x)
| Std. Python function
| Airy function of the first (Ai) and second (Bi) kind and their derivatives
| See see [https://en.wikipedia.org/wiki/Airy_function Airy Functions on Wikipedia.]
|-
| sp.j0(x)
| Std. Python function
| Bessel function of the first kind and order 0
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.j1(x)
| Std. Python function
| Bessel function of the first kind and order 1
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.jv(n,x)
| Std. Python function
| Bessel function of the first kind and order n
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.y0(x)
| Std. Python function
| Bessel function of the second kind and order 0
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.y1(x)
| Std. Python function
| Bessel function of the second kind and order 1
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.yv(n,x)
| Std. Python function
| Bessel function of the second kind and order n
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.i0(x)
| Std. Python function
| Modified Bessel function of the first kind and order 0
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.i1(x)
| Std. Python function
| Modified Bessel function of the first kind and order 1
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.iv(n,x)
| Std. Python function
| Modified Bessel function of the first kind and order n
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.k0(x)
| Std. Python function
| Modified Bessel function of the second kind and order 0
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.k1(x)
| Std. Python function
| Modified Bessel function of the second kind and order 1
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.kv(n,x)
| Std. Python function
| Modified Bessel function of the second kind and order n
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.sph_jn(n,x)
| Std. Python function
| Spherical Bessel function of the first kind and order n
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.sph_yn(n,x)
| Std. Python function
| Spherical Bessel function of the second kind and order n
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.sph_in(n,x)
| Std. Python function
| Modified spherical Bessel function of the first kind and order n
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.sph_kn(n,x)
| Std. Python function
| Modified spherical Bessel function of the second kind and order n
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.lpn(n,x)
| Std. Python function
| Legendre function of the first kind and order n
| See see [https://en.wikipedia.org/wiki/Legendre_polynomial Legendre Polynomials on Wikipedia.]
|-
| sp.lqn(n,x)
| Std. Python function
| Legendre function of the second kind and order n
| See see [https://en.wikipedia.org/wiki/Legendre_polynomials Legendre Polynomials on Wikipedia.]
|-
| sp.lpmn(m,n,x)
| Std. Python function
| Associated Legendre function of the first kind and order n
| See see [https://en.wikipedia.org/wiki/Legendre_polynomial Legendre Polynomials on Wikipedia.]
|-
| sp.lqmn(m,n,x)
| Std. Python function
| Associated Legendre function of the second kind and order n
| See see [https://en.wikipedia.org/wiki/Legendre_polynomials Legendre Polynomials on Wikipedia.]
|-
| sp.eval_chebyt(n,x)
| Std. Python function
| Chebyshev polynomial of the first kind and order n
| See see [https://en.wikipedia.org/wiki/Chebyshev_polynomials Chebyshev Polynomials on Wikipedia.]
|-
| sp.eval_chebyu(n,x)
| Std. Python function
| Chebyshev polynomial of the second kind and order n
| See see [https://en.wikipedia.org/wiki/Chebyshev_polynomials Chebyshev Polynomials on Wikipedia.]
|-
| sp.eval_legendre(n,x)
| Std. Python function
| Legendre polynomial of order n
| See see [https://en.wikipedia.org/wiki/Legendre_polynomials Legendre Polynomials on Wikipedia.]
|-
| sp.eval_laguerre(n,x)
| Std. Python function
| Laguerre polynomial of order n
| See see [https://en.wikipedia.org/wiki/Laguerre_polynomials Laguerre Polynomials on Wikipedia.]
|-
| sp.eval_hermite(n,x)
| Std. Python function
| Hermite polynomial of order n
| See see [https://en.wikipedia.org/wiki/Hermite_polynomials Hermite Polynomials on Wikipedia.]
|-
| Math_cesp.mathieu_cem(n,rq,x)
| Std. Python function
| Even periodic (cosine) Mathieu function of order nand its derivative| See see [https://en.wikipedia.org/wiki/Mathieu_function Mathieu Functions on Wikipedia.]
|-
| Math_sesp.mathieu_sem(n,rq,x)
| Std. Python function
| Odd periodic (sine) Mathieu function of order nand its derivative| See see [https://en.wikipedia.org/wiki/Mathieu_function Mathieu Functions on Wikipedia.]
|}
== EM.Cube's Miscellaneous Native Python Functions ==
{| class="wikitable"!scope="col"| Syntax!scope="col"| Type!scope="col"| Description!scopeactivate="col"| Notes|-| style="width:80px;" | rect(x)| style="width:150px;" | EMAG Python function| style="width:270px;" | Rectangle function| style="width:270px;" | 1 if |x|&le;0.5, 0 elsewhere |-| tri(x)| EMAG Python function| Triangle function| 1 if |1-x|&le;1, 0 elsewhere |-| spline2(x)| EMAG Python function| Quadratic spline function| -|-| spline3(x)| EMAG Python function| Cubic spline function| -|-| step(x)| EMAG Python function| Step function| 1 if x>0, 0 if x<0|-| sgn(x)| Std. Python function| Sign function| 1 if x>0, -1 if x<0|-| ramp(x)| EMAG Python function| Ramp function| x if x>0, 0 if x<0|-| sqr_wave(x)| EMAG Python function| Square wave function| -|-| tri_wave(x)| EMAG Python function| Triangle wave function| -|-| sawtooth(x)| EMAG Python function| Sawtooth wave function| -|-| sinc(x)| EMAG Python function| Sinc function| sin(pi*x)/(pi*x)|-| gauss(x,mu,sigma)| EMAG Python function| Gaussian function of mean mu and standard deviation sigma| exp(-0.5*((x-mu)/sigma)**2)/sigma/sqrt(2*pi)|-| msin(x,r)| EMAG Python function| super-quadratic sine function of order r| -|-| mcos(x,r)| EMAG Python function| super-quadratic cosine function of order r| -|-| sigmoid(x,a)| EMAG Python function| Sigmoid function of slope a| 2/(1 + exp(-a*x)) - 1|-| bh_window(x,T)| EMAG Python function| Blackman-Harris window function| -|-| bh_step(x,T)| EMAG Python function| Blackman-Harris step function| -|-| rand(x,y)| EMAG Python function| Random function| -|-| rosen(x,y,a,b)| EMAG Python function| Rosenbrock function| (a-x)**2 + b*(y-x**2)**2|-| mean(x,y)| EMAG Python function| arithmetic mean of x and y| 0.5*(x+y)|-| geo(x,y)| EMAG Python function| geometric mean of x and y| sqrt(x*y)|-| harm(x,y)| EMAG Python function| harmonic mean of x and y| 2/(1/x+1/y)|-| sqr2(x,y)| EMAG Python function| sum of squares of x and y| x**2 + y**2|-| sqr3(x,y,z)| EMAG Python function| sum of squares of x and y and z| x**2 + y**2 + z**3|-| sqrt2(x,y)| EMAG Python function| radius of 2D point (x,y)| sqrt(x**2 + y**2)|-| sqrt3(x,y,z)| EMAG Python function| radius of 3D point (x,y,z)| sqrt(x**2 + y**2 + z**3)|}
== EM.Cube's Design Python Functions ==SYNTAX: activate({{ArgTypeString}} group_node_label)
{| class=EXAMPLE: ''activate("wikitableColor_1")'' DESCRIPTION: Activates a color, material or object group in the current active [[EM.Cube]] module for insertion of new objects.  !scope====add_variable==== SYNTAX: add_variable({{ArgTypeString}} var_name, {{ArgTypeAny}} value) EXAMPLE: ''add_variable("colMyVar"| Syntax,1)'' DESCRIPTION: Adds a new variable to [[EM.Cube]]'s variable list. !scope====array==== SYNTAX: array({{ArgTypeString}} label, {{ArgTypeString}} object, {{ArgTypeAny}} x_count, {{ArgTypeAny}} y_count, {{ArgTypeAny}} z_count, {{ArgTypeAny}} x_spacing, {{ArgTypeAny}} y_spacing, {{ArgTypeAny}} z_spacing) EXAMPLE: ''array("colArray_1"| Type,"Rect_Strip_1",4,4,1,50,50,0)'' DESCRIPTION: Creates or modifies an array object. !scope====array_custom==== SYNTAX: array_custom({{ArgTypeString}} label, {{ArgTypeString}} object, {{ArgTypeAny}} x_count, {{ArgTypeAny}} y_count, {{ArgTypeAny}} z_count, {{ArgTypeAny}} x_spacing, {{ArgTypeAny}} y_spacing, {{ArgTypeAny}} z_spacing, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} rot_x, {{ArgTypeAny}} rot_y, {{ArgTypeAny}} rot_z) EXAMPLE: ''array_custom("colArray_1"| Description,"Rect_Strip_1",4,4,1,50,50,0,100,100,20,0,0,45)'' DESCRIPTION: Creates or modifies an array object and sets its local coordinate system and rotation angles. !scope====background_layer==== SYNTAX: background_layer({{ArgTypeString}} label, {{ArgTypeAny}} eps, {{ArgTypeAny}} sigma, {{ArgTypeAny}} mu, {{ArgTypeAny}} thickness) EXAMPLE: ''background_layer("colMid_Layer"| Notes,3.3,0.001,1,1.5)'' DESCRIPTION: Adds a new substrate layer to [[EM.Picasso]]'s background layer stackup.|-| style="width===base_point_group==== SYNTAX:100px;base_point_group({{ArgTypeString}} label) EXAMPLE: ''base_point_set(" | microstrip_designBP_Set_1")'' DESCRIPTION: Creates a base point set in [[EM.Terrano]]. If the base point set group 'label' already exists, the group is activated. ====bh_step==== SYNTAX: bh_step(z0{{ArgTypeReal}} x,er{{ArgTypeReal}} T)| styleEXAMPLE: ''bh_step(0.5,1)'' DESCRIPTION: Computes and returns the Blackman-Harris step function. ="width===bh_window==== SYNTAX:150px;" | EMAG Python bh_window({{ArgTypeReal}} x, {{ArgTypeReal}} T) EXAMPLE: ''bh_window(0.5,1)'' DESCRIPTION: Computes and returns the Blackman-Harris window function. | style="width===box==== SYNTAX:250px;box({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} base_x, {{ArgTypeAny}} base_y, {{ArgTypeAny}} height[, {{ArgTypeAny}} cap_top, {{ArgTypeAny}} cap_bottom]) EXAMPLE: ''box(" | Returns Box_1",0,0,0,50,50,100)'' DESCRIPTION: Draws a box object in the widthproject workspace under the currently activated material group node, or modifies the box named 'label' if it already exists. ====capacitance==== SYNTAX: capacitance({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2, {{ArgTypeAny}} x3, {{ArgTypeAny}} y3, {{ArgTypeAny}} z3, {{ArgTypeAny}} x4, {{ArgTypeAny}} y4, {{ArgTypeAny}} z4) EXAMPLE: ''capacitance("FI_1",-to10,-height ratio of 10,5,10,10,10,0,0,-10,0,0,10)'' DESCRIPTION: Creates a microstrip transmission line capacitance integral observable in [[EM.Ferma]]. If the observable 'label' already exists, its properties are modified. | style="width===capacitor==== SYNTAX:250px;capacitor({{ArgTypeString}} label, {{ArgTypeAny}} line_object, {{ArgTypeAny}} offset, {{ArgTypeAny}} capacitance_pF) EXAMPLE: ''capacitor(" | z0Cap_1","Line_1",25,10)'' DESCRIPTION: characteristic impedance Creates a capacitor in Ohms[[EM.Tempo]]. If the capacitor 'label' already exists, erits properties are modified. ====charge_group==== SYNTAX: substrate permittivitycharge_group({{ArgTypeString}} label, {{ArgTypeAny}} density)|EXAMPLE: ''charge_group("Charge_1",-1e-5)'' DESCRIPTION: Creates a volume charge source group in [[EM.Ferma]]. If the charge group 'label' already exists, the group is activated. | style="width===circ_strip==== SYNTAX:100px;" | microstrip_z0circ_strip(w{{ArgTypeString}} label,h{{ArgTypeAny}} x0,er{{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} inner_radius, {{ArgTypeAny}} outer_radius[, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle])| style=EXAMPLE: ''circ_strip("widthcs_1",0,0,0,50,0)'' DESCRIPTION:150px;Draws a circle strip object in the project workspace under the currently activated material group node, or modifies the circle strip object named 'label' if it already exists. The arguments start_angle and end_angle are in degrees and specify a sweep about the circle strip's azimuth axis. ====circle==== SYNTAX: circle({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle) EXAMPLE: ''circle(" | EMAG Python functionpyramid_1",0,0,0,10,10,100)'' DESCRIPTION: Draws a circular curve object in the project workspace under the currently activated material group node, or modifies the circle named 'label' if it already exists. The parameters start_angle and end_angle are in degrees. | style====clone==== SYNTAX: clone({{ArgTypeString}} label, {{ArgTypeString}} object, {{ArgTypeReal}} x0, {{ArgTypeReal}} y0, {{ArgTypeReal}} z0) EXAMPLE: ''clone("widthNewObj","MyObj",10,10,0)'' DESCRIPTION:250px;Creates a copy of the specified object and repositions it at the given coordinates.  ====close_curve==== SYNTAX: close_curve({{ArgTypeString}} label, {{ArgTypeString}} close_state) EXAMPLE: ''close_curve(" | Returns Curve_1",1)'' DESCRIPTION: Sets the characteristic impedance open/close state of a microstrip polyline or NURBS curve. Use 0 for open curve and 1 for close curve. ====coaxial_design==== SYNTAX: coaxial_design({{ArgTypeReal}} z0, {{ArgTypeReal}} er) EXAMPLE: ''coaxial_design(50,2.2)'' DESCRIPTION: Computes and returns the ratio of the radius of the outer conductor to the radius of the inner conductor of a coaxial transmission line of characteristic impedance z0 (in Ohms ) with core relative permittivity er. | style="width===coaxial_src==== SYNTAX:250px;coaxial_src({{ArgTypeString}} label, {{ArgTypeAny}} cylinder_object, {{ArgTypeAny}} outer_radius, {{ArgTypeAny}} edge[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance]) EXAMPLE: ''coaxial_src(" | wCOAX_1","Cyl_1",1.5,"+z")'' DESCRIPTION: microstrip widthCreates a coaxial port source in [[EM.Tempo]]. If the coaxial port 'label' already exists, hits properties are modified. ====color_group==== SYNTAX: substrate heightcolor_group({{ArgTypeString}} label) EXAMPLE: ''color_group("Color_1")'' DESCRIPTION: Creates a color group in CubeCAD module. If the color group 'label' already exists, erthe group is activated. ====conduction_current_integral==== SYNTAX: substrate permittivityconduction_current_integral({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2)|EXAMPLE: ''conduction_current_integral("FI_1",-10,-10,0,10,10,0)'' DESCRIPTION: Creates a conduction current integral observable in [[EM.Ferma]]. If the observable 'label' already exists, its properties are modified. | style="width===conductive_sheet_group==== SYNTAX:100px;" | microstrip_eps_effconductive_sheet_group(w{{ArgTypeString}} label,h{{ArgTypeAny}} sigma,er{{ArgTypeAny}} thickness)| style="widthEXAMPLE:150px;''conductive_sheet_group(" | EMAG Python functionCond_1",100, 0.01)'' DESCRIPTION: Creates a conductive sheet group in [[EM.Picasso]]. If the conductive sheet group 'label' already exists, the group is activated. | style="width===cone==== SYNTAX:250px;cone({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} base_radius, {{ArgTypeAny}} height[, {{ArgTypeAny}} top_radius, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle, {{ArgTypeAny}} cap_top, {{ArgTypeAny}} cap_bottom]) EXAMPLE: ''cone(" | Returns Cone_1",0,0,0,30,40,20,0,180)'' DESCRIPTION: Draws a cone object in the effective permittivity of project workspace under the currently activated material group node, or modifies the cone named 'label' if it already exists. The arguments start_angle and end_angle are in degrees and specify a microstrip transmission line sweep about the cone's azimuth axis. | style="width===consolidate==== SYNTAX:250px;consolidate({{ArgTypeString}} object) EXAMPLE: ''consolidate(" | wPoly_1")'' DESCRIPTION: microstrip widthConsolidates a specified object. ====cpw_design_s==== SYNTAX: cpw_design_s({{ArgTypeReal}} z0, {{ArgTypeReal}} w, {{ArgTypeReal}} h: substrate height, {{ArgTypeReal}} er) EXAMPLE: ''cpw_design_s(50,2,0.5,2.2)'' DESCRIPTION: Computes and returns the center strip width (in meters) of a CPW transmission line of characteristic impedance z0 with slot width w, substrate height h and substrate relative permittivityer.|-| style="width===cpw_design_w==== SYNTAX:100px;" | microstrip_lambda_gcpw_design_w(w{{ArgTypeReal}} z0,{{ArgTypeReal}} s, {{ArgTypeReal}} h,{{ArgTypeReal}} er) EXAMPLE: ''cpw_design_w(50,freq_hertz1,0.5,2.2)''| style="DESCRIPTION: Computes and returns the slot width(in meters) of a CPW transmission line of characteristic impedance z0 with center strip width s, substrate height h and substrate relative permittivity er. ====cpw_src==== SYNTAX:150px;cpw_src({{ArgTypeString}} label, {{ArgTypeAny}} rect_object, {{ArgTypeAny}} spacing, {{ArgTypeAny}} edge[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance]) EXAMPLE: ''cpw_src(" | EMAG Python functionCPW_1","Rect_1",1.5,"+x")'' DESCRIPTION: Creates a CPW port source in [[EM.Tempo]]. If the CPW port 'label' already exists, its properties are modified. | style="width===cubecad_mesh_settings==== SYNTAX:250px;" | Returns cubecad_mesh_settings({{ArgTypeAny}} edge_length, {{ArgTypeAny}} angle_tol) EXAMPLE: ''cubecad_mesh_settings(5,10)'' DESCRIPTION: Sets the guide wavelength parameters of CubeCAD's mesh generator. ====current_dist==== SYNTAX: current_dist({{ArgTypeString}} label) EXAMPLE: ''current_dist("CD_1")'' DESCRIPTION: Creates a microstrip transmission line current distribution observable. If the observable 'label' already exists, its properties are modified. ====current_integral==== SYNTAX: current_integral({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2) EXAMPLE: ''current_integral("FI_1",-10,-10,0,10,10,0)'' DESCRIPTION: Creates a current integral observable in meters[[EM.Ferma]]. If the observable 'label' already exists, its properties are modified. | style====cylinder==== SYNTAX: cylinder({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius, {{ArgTypeAny}} height[, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle, {{ArgTypeAny}} cap_top, {{ArgTypeAny}} cap_bottom]) EXAMPLE: ''cylinder("widthCylinder_1",0,0,0,10,100)'' DESCRIPTION:250px;Draws a cylinder object in the project workspace under the currently activated material group node, or modifies the cylinder named 'label' if it already exists. The arguments start_angle and end_angle are in degrees and specify a sweep about the cylinder's azimuth axis. ====delete==== SYNTAX: delete({{ArgTypeString}} node_name) EXAMPLE: ''delete(" | wBox_1")'' DESCRIPTION: microstrip widthDeletes a node name from the navigation tree. The node can be any geometric object, hsource, observable or material group.  ====delete_background_layer==== SYNTAX: delete_background_layer({{ArgTypeString}} label) EXAMPLE: ''delete_background_layer("Mid_Layer")'' DESCRIPTION: Deletes a finite-thickness substrate heightlayer from [[EM.Picasso]]'s background layer stackup. ====dielectric_group==== SYNTAX: dielectric_group({{ArgTypeString}} label, er{{ArgTypeAny}} eps, {{ArgTypeAny}} sigma, {{ArgTypeAny}} mu, {{ArgTypeAny}} rho) EXAMPLE: substrate permittivity''dielectric_group("Dielectric_1", freq_hertz"my_eps",0,1,0)'' DESCRIPTION: frequency Creates a dielectric material group in Hzthe current module with the specified material properties. If the dielectric group 'label' already exists, the group is activated.|-| style====diode==== SYNTAX: diode({{ArgTypeString}} label, {{ArgTypeAny}} line_object, {{ArgTypeAny}} polarity, {{ArgTypeAny}} is_fA, {{ArgTypeAny}} temperature_K, {{ArgTypeAny}} ideality_factor) EXAMPLE: ''diode("widthDiode_1","Line_1",25,0,10,300,1)'' DESCRIPTION:100px;Creates a diode in [[EM.Tempo]]. If the diode 'label' already exists, its properties are modified. ====distributed_src==== SYNTAX: distributed_src({{ArgTypeString}} label, {{ArgTypeAny}} rect_object, {{ArgTypeAny}} field_dir, {{ArgTypeAny}} profile[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance]) EXAMPLE: ''distributed_src(" | cpw_design_wDS_1","Rect_1","+y","uniform")'' DESCRIPTION: Creates a distributed source in [[EM.Tempo]]. If the distributed source 'label' already exists, its properties are modified. ====ellipse_strip==== SYNTAX: ellipse_strip({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0,{{ArgTypeAny}} radius_x, {{ArgTypeAny}} radius_y[, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle]) EXAMPLE: ''ellipse_strip("es_1",0,0,0,50,0)'' DESCRIPTION: Draws a ellipse strip object in the project workspace under the currently activated material group node, or modifies the ellipse strip object named 'label' if it already exists. The arguments start_angle and end_angle are in degrees and specify a sweep about the ellipse strip'sazimuth axis. ====ellipsoid==== SYNTAX: ellipsoid({{ArgTypeString}} label,h{{ArgTypeAny}} x0,er{{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius_x, {{ArgTypeAny}} radius_y, {{ArgTypeAny}} radius_z[, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle])| styleEXAMPLE: ''ellipsoid("Ellipsoid_1",0,0,0,100,100,50,0,360)'' DESCRIPTION: Draws an ellipsoid object in the project workspace under the currently activated material group node, or modifies the ellipsoid named 'label' if it already exists. The arguments start_angle and end_angle are in degrees and specify a sweep about the ellipsoid's azimuth axis. ====emferma_engine_settings==== SYNTAX: emferma_engine_settings({{ArgTypeString}} matrix_solver, {{ArgTypeAny}} error_tol, {{ArgTypeAny}} max_iterations) EXAMPLE: ''emferma_engine_settings("widthbicg-stab",1e-3,100)'' DESCRIPTION:150px;Sets the parameters of [[EM.Ferma]]'s electrostatic and magnetostatic simulation engines. ====emferma_mesh_settings==== SYNTAX: emferma_mesh_settings({{ArgTypeAny}} cell_size_x, {{ArgTypeAny}} cell_size_y, {{ArgTypeAny}} cell_size_z) EXAMPLE: ''emferma_mesh_settings(0.5,0.5,0.5)'' DESCRIPTION: Sets the parameters of [[EM.Ferma]]'s fixed-cell mesh generator. ====emillumina_engine_settings==== SYNTAX: emillumina_engine_settings({{ArgTypeString}} engine, {{ArgTypeAny}} is_fixed_iteration, {{ArgTypeAny}} error_tol, {{ArgTypeAny}} max_iterations) EXAMPLE: ''emillumina_engine_settings(" | EMAG Python functionipo",0,1e-2,20)'' DESCRIPTION: Sets the parameters of [[EM.Illumina]]'s Physical Optics simulation engine. | style====emillumina_mesh_settings==== SYNTAX: emillumina_mesh_settings({{ArgTypeAny}} cells_per_lambda) EXAMPLE: ''emillumina_mesh_settings(30)'' DESCRIPTION: Sets the parameters of [[EM.Illumina]]'s mesh generator. ====emlibera_engine_settings_smom==== SYNTAX: emlibera_engine_settings_smom({{ArgTypeString}} matrix_solver, {{ArgTypeAny}} error_tol, {{ArgTypeAny}} max_iterations, {{ArgTypeAny}} ncpus, {{ArgTypeString}} formulation, {{ArgTypeAny}} alpha) EXAMPLE: ''emlibera_engine_settings_smom("widthbicg",1e-3,1000,4,"efie",0.4)'' DESCRIPTION:250px;Sets the parameters of [[EM.Libera]]'s surface MoM simulation engines. ====emlibera_engine_settings_wmom==== SYNTAX: emlibera_engine_settings_wmom({{ArgTypeString}} matrix_solver, {{ArgTypeAny}} error_tol, {{ArgTypeAny}} max_iterations) EXAMPLE: ''emlibera_engine_settings_wmom(" | Returns bicg",1e-3,1000)'' DESCRIPTION: Sets the slot width parameters of a coplanar waveguide [[EM.Libera]]'s wire MoM simulation engines. ====emlibera_mesh_settings==== SYNTAX: emlibera_mesh_settings(CPW{{ArgTypeAny}} cells_per_lambda) transmission line | styleEXAMPLE: ''emlibera_mesh_settings(30)'' DESCRIPTION: Sets the parameters of [[EM.Libera]]'s mesh generator. ====empicasso_engine_settings==== SYNTAX: empicasso_engine_settings({{ArgTypeString}} matrix_solver, {{ArgTypeAny}} error_tol, {{ArgTypeAny}} max_iterations) EXAMPLE: ''empicasso_engine_settings("widthbicg",1e-3,1000)'' DESCRIPTION:250px;Sets the parameters of [[EM.Picasso]]'s planar MoM simulation engine. ====empicasso_mesh_settings==== SYNTAX: empicasso_mesh_settings({{ArgTypeAny}} cells_per_lambda) EXAMPLE: ''empicasso_mesh_settings(30)'' DESCRIPTION: Sets the parameters of [[EM.Picasso]]'s planar hybrid mesh generator. ====emtempo_engine_settings==== SYNTAX: emtempo_engine_settings({{ArgTypeString}} engine, {{ArgTypeAny}} power_threshhold, {{ArgTypeAny}} max_timesteps) EXAMPLE: ''emtempo_engine_settings(" | z0single-precision",-50,20000)'' DESCRIPTION: characteristic impedance in OhmsSets the parameters of [[EM.Tempo]]'s FDTD simulation engine. ====emtempo_mesh_settings==== SYNTAX: emtempo_mesh_settings({{ArgTypeAny}} cells_per_lambda, {{ArgTypeAny}} ratio_contour, {{ArgTypeAny}} ratio_thin, {{ArgTypeAny}} ratio_abs) EXAMPLE: ''emtempo_mesh_settings(30,0.1,0.1,0.02)'' DESCRIPTION: Sets the parameters of [[EM.Tempo]]'sadaptive mesh generator. ====emterrano_engine_settings==== SYNTAX: center strip width emterrano_engine_settings(or slot spacing{{ArgTypeAny}} bounce_count, {{ArgTypeAny}} do_edge_diffraction, {{ArgTypeAny}} angular_resolution, {{ArgTypeAny}} ray_threshhold) EXAMPLE: ''emterrano_engine_settings(5, h1,1,-100)'' DESCRIPTION: substrate heightSets the parameters of [[EM.Terrano]]'s SBR simulation engine. ====emterrano_mesh_settings==== SYNTAX: emterrano_mesh_settings({{ArgTypeAny}} edge_length, er{{ArgTypeAny}} angle_tol) EXAMPLE: substrate permittivity''emterrano_mesh_settings(5,10)'' DESCRIPTION: Sets the parameters of [[EM.Terrano]]'s facet mesh generator.|-| style="width===energy_electric==== SYNTAX:100px;energy_electric({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2) EXAMPLE: ''energy_electric(" | cpw_design_sFI_1",-10,-10,-10,10,10,10)'' DESCRIPTION: Creates an electric energy integral observable in [[EM.Ferma]]. If the observable 'label' already exists, its properties are modified. ====energy_magnetic==== SYNTAX: energy_magnetic(z0{{ArgTypeString}} label,w{{ArgTypeAny}} x1,h{{ArgTypeAny}} y1,er{{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2)| styleEXAMPLE: ''energy_magnetic("FI_1",-10,-10,-10,10,10,10)'' DESCRIPTION: Creates a magnetic energy integral observable in [[EM.Ferma]]. If the observable 'label' already exists, its properties are modified. ====explode==== SYNTAX: explode({{ArgTypeString}} object) EXAMPLE: ''explode("widthMyArray")'' DESCRIPTION:150px;Explodes an object into its basic primitives. ====export_dxf==== SYNTAX: export_dxf({{ArgTypeString}} file_name) EXAMPLE: ''export_dxf(" | EMAG Python functionMyDXFModel.DXF")'' DESCRIPTION: Exports the physical structure of the project workspacean to a DXF model file. If the file path is not specified, the current project folder is assumed as the path. | style====export_py==== SYNTAX: export_py({{ArgTypeString}} file_name) EXAMPLE: ''export_py("widthMyPYModel.PY")'' DESCRIPTION:250pxExports the physical structure of the project workspace or the current object selection to a Python geometry file. The default path is the Python subfolder under "Documents &rarr;EMAG" | Returns the center strip width . ====export_stl==== SYNTAX: export_stl(or slot spacing{{ArgTypeString}} file_name)  EXAMPLE: ''export_stl("MySTLModel.STL")'' DESCRIPTION: Exports the physical structure of a coplanar waveguide the project workspacean to an STL model file. If the file path is not specified, the current project folder is assumed as the path. ====extrude==== SYNTAX: extrude(CPW{{ArgTypeString}} label, {{ArgTypeString}} object, {{ArgTypeAny}} extrude_height, {{ArgTypeAny}} cap_ends) transmission line  EXAMPLE: ''extrude("Extrude_1","Rect_Strip1",50)'' DESCRIPTION: Creates or modifies an extrusion object from a specified object by the specified height. If modifying an existing extrusion object, the pre-existing primitive is used. This command can only extrude objects that have a single face and will extrude along the face's normal. | style="width===farfield==== SYNTAX:250px;farfield({{ArgTypeString}} label, {{ArgTypeAny}} theta_incr, {{ArgTypeAny}} phi_incr) EXAMPLE: ''farfield(" | FF_1",1,1)'' DESCRIPTION: Creates a far-field radiation pattern observable. If the observable 'label' already exists, its properties are modified. ====field_probe==== SYNTAX: field_probe({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0) EXAMPLE: characteristic impedance in Ohms''field_probe("FS_1", w0,0,50)'' DESCRIPTION: slot widthCreates a temporal field probe observable in [[EM.Tempo]] or [[EM.Ferma]]. If the observable 'label' already exists, hits properties are modified. ====field_sensor==== SYNTAX: substrate heightfield_sensor({{ArgTypeString}} label, er{{ArgTypeAny}} dir_coordinate, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} xSize, {{ArgTypeAny}} ySize, {{ArgTypeAny}} zSize, {{ArgTypeAny}} xSamples, {{ArgTypeAny}} ySamples, {{ArgTypeAny}} zSamples) EXAMPLE: substrate permittivity''field_sensor("FS_1","z",0,0,0,100,100,0,25,25,0)''|DESCRIPTION: Creates a near-field sensor observable. If the observable 'label' already exists, its properties are modified. | style="width===field_sensor_grid==== SYNTAX:100px;" | coaxial_designfield_sensor_grid({{ArgTypeString}} label, {{ArgTypeAny}} dir_coordinate, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0) EXAMPLE: ''field_sensor_grid("FS_1",er"z",0,0,0)'' DESCRIPTION: Creates a near-field sensor observable in [[EM.Tempo]] or [[EM.Ferma]]. If the observable 'label' already exists, its properties are modified. | style="width===fill_curve==== SYNTAX:150px;fill_curve({{ArgTypeString}} object) EXAMPLE: ''fill_curve(" | EMAG Python functionCurve_1")'' DESCRIPTION: Fill the interior of the specified closed curve object. | style="width===fillet==== fillet({{ArgTypeString}} object, {{ArgTypeAny}} radius) EXAMPLE:250px;''fillet(" | Returns Rect_1",5)'' DESCRIPTION: Fillets the ratio of radius corners of the outer conductor to specified surface or curve object by the specified radius of the inner condutcor of a coaxial transmission line . | style="width===flux_electric==== SYNTAX:250px;flux_electric({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2) EXAMPLE: ''flux_electric(" | z0FI_1",-10,-10,5,10,10,10)'' DESCRIPTION: characteristic impedance Creates an electric flux integral observable in Ohms[[EM.Ferma]]. If the observable 'label' already exists, erits properties are modified. ====flux_magnetic==== SYNTAX: core permittivityflux_magnetic({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2)|EXAMPLE: ''flux_magnetic("FI_1",0,0,-10,10,0,10)'' DESCRIPTION: Creates a magnetic flux integral observable in [[EM.Ferma]]. If the observable 'label' already exists, its properties are modified. | style="width===fractal_tree==== SYNTAX:100px;" | waveguide_designfractal_tree(er{{ArgTypeString}} label,freq_hertz{{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} key_type, {{ArgTypeAny}} key_size, {{ArgTypeAny}} n_level, {{ArgTypeAny}} sep_angle, {{ArgTypeAny}} n_gen, {{ArgTypeAny}} prune_factor, {{ArgTypeAny}} thickness, {{ArgTypeAny}} thick_factor)| style=EXAMPLE: ''fractal_tree("widthFractal_1",0,0,0,"line",10,3,30,3,0,0,0)'' DESCRIPTION:150px;Generates a fractal tree in the project workspace under the currently activated material group node, or modifies the fractal tree named 'label' if it already exists. ====freeze==== SYNTAX: freeze({{ArgTypeString}} object, {{ArgTypeReal}} freeze_state) EXAMPLE: ''freeze(" | EMAG Python MyObj",1)'' DESCRIPTION: Sets the freeze state of an object (0/1).  ====gauss==== SYNTAX: gauss({{ArgTypeReal}} x, ArgTypeReal}} mu, ArgTypeReal}} sigma) EXAMPLE: ''gauss(0.5,0,1)'' DESCRIPTION: Computes and returns the Gaussian functionof mean mu and standard deviation sigma: exp(-0.5*((x-mu)/sigma)**2)/sigma/sqrt(2*pi). | style====gauss_beam==== SYNTAX: gauss_beam({{ArgTypeString}} label, {{ArgTypeAny}} theta, {{ArgTypeAny}} phi, {{ArgTypeAny}} polarization, {{ArgTypeAny}} focus_x, {{ArgTypeAny}} focus_y, {{ArgTypeAny}} focus_z, {{ArgTypeAny}} radius, {{ArgTypeAny}} p_mode, {{ArgTypeAny}} q_mode) EXAMPLE: ''gauss_beam("widthPW_1",180,0,"tm",0,0,0,20,0,0)'' DESCRIPTION:250px;Creates a Gaussian beam source in [[EM.Tempo]]. If the Gaussian beam source 'label' already exists, its properties are modified. ====generate_input_files==== SYNTAX: generate_input_files() EXAMPLE: ''generate_input_files()'' DESCRIPTION: Generates all the input files for the simulation engine of the current module without running a simulation. ====geo==== SYNTAX: geo({{ArgTypeReal}} x, {{ArgTypeReal}} y) EXAMPLE: ''geo(1,2)'' DESCRIPTION: Computes and returns the geometric mean of x and y: sqrt(x*y). ====get_area==== SYNTAX: get_area({{ArgTypeString}} object) EXAMPLE: ''get_area(" | ellipse_1")'' DESCRIPTION: Returns the minimum larger dimension in meter area of a surface object or the cross section total surface area of a hollow rectangular waveguide above cutoff solid object. | style====get_axis==== SYNTAX: get_axis({{ArgTypeString}} object, {{ArgTypeString}} axis, {{ArgTypeString}} coordinate) EXAMPLE: ''get_axis("widthpyramid_1","x","y")'' DESCRIPTION:250px;Returns the specified coordinate of the unit vector along the specified local axis of an object. ====get_domain_extent==== SYNTAX: get_domain_extent({{ArgTypeString}} coordinate) EXAMPLE: ''get_domain_extent(" | erx")'' DESCRIPTION: filling permittivityReturns the size of the computational domain along the specified direction. ====get_extent==== SYNTAX: get_extent({{ArgTypeString}} object, freq_hertz{{ArgTypeString}} coordinate) EXAMPLE: frequency in Hz''get_extent("pyramid_1","x")'' DESCRIPTION: Returns the size of the bounding box of an object along the specified direction.|-| style="width===get_lcs==== SYNTAX:100px;get_lcs({{ArgTypeString}} object, {{ArgTypeString}} coordinate) EXAMPLE: ''get_lcs(" | horn_design_apyramid_1","x")'' DESCRIPTION: Returns the specified coordinate of the LCS of an object. ====get_lcs_offset==== SYNTAX: get_lcs_offset(D0_dB{{ArgTypeString}} object,a_lambda{{ArgTypeAny}} x_off,b_lambda{{ArgTypeAny}} y_off, {{ArgTypeAny}} z_off, {{ArgTypeString}} coordinate)| styleEXAMPLE: ''get_lcs_offset("box_1",50,50,0,"x")'' DESCRIPTION: Returns the specified coordinate of the LCS of an object after being translated by the specified offset values along the three principal axes. ====get_length==== SYNTAX: get_length({{ArgTypeString}} object) EXAMPLE: ''get_length("widthhelix_1")'' DESCRIPTION:150px;Returns the length of a curve object. ====get_rot==== SYNTAX: get_rot({{ArgTypeString}} object, {{ArgTypeString}} coordinate) EXAMPLE: ''get_rot(" | EMAG Python functionpyramid_1","x")'' DESCRIPTION: Returns the specified rotation angle of an object. | style====get_standard_output==== SYNTAX: get_standard_output({{ArgTypeString}} output_name)  EXAMPLE: ''get_standard_output("widthS11M")'' DESCRIPTION:250px;Returns the computed value of the specified standard output parameter at the end of a simulation. ====get_vertex==== SYNTAX: get_vertex({{ArgTypeString}} object, {{ArgTypeAny}} node_index, {{ArgTypeString}} coordinate) EXAMPLE: ''get_vertex(" | pyramid_1",0,"x")'' DESCRIPTION: Returns the wavelength-normalized larger dimension specified coordinate of the aperture specified vertex of the bounding box of an optimal pyramidal horn antenna object. The vertices are specified by node indices. The lower front left corner has an index of 0, while the upper back right corner has an index of 7. The indices are numbered counterclockwise, with the bottom face first and top face next.  | style="width===get_volume==== SYNTAX:250px;get_volume({{ArgTypeString}} object) EXAMPLE: ''get_volume(" | D0_dBpyramid_1")'' DESCRIPTION: directivity dReturns the volume of a solid object. ====global_ground==== SYNTAX: global_ground({{ArgTypeAny}} ground_on, a_lambda{{ArgTypeAny}} eps, {{ArgTypeAny}} sigma) EXAMPLE: wavelength-normalized larger dimension of ''global_ground(1,3.3,0.001)'' DESCRIPTION: Set the feed waveguidestate of [[EM.Terrano]]'s global ground and its material properties. A zero value for ground_on means to no global ground assumed at Z = 0.  ====group==== SYNTAX: group({{ArgTypeString}} label, b_lambda{{ArgTypeString}} object_1, {{ArgTypeString}} object_2, ...) EXAMPLE: wavelength-normalized smaller dimension ''group("Composite_1","Box_1","Box_2","Box_3")'' DESCRIPTION: Groups a number of objects into a composite object with the feed waveguide given label.|-| style====harm==== SYNTAX: harm({{ArgTypeReal}} x, {{ArgTypeReal}} y) EXAMPLE: ''harm(1,2)'' DESCRIPTION: Computes and returns the harmonic mean of x and y: 2/(1/x+1/y). ====helix==== SYNTAX: helix({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius_inner, {{ArgTypeAny}} radius_outer, {{ArgTypeAny}} nturns, {{ArgTypeAny}} helix_dir) EXAMPLE: ''helix("widthHelix_1",0,0,0,15,15,10,0)'' DESCRIPTION:100px;Draws a helical curve in the project workspace under the currently activated material group node, or modifies the helix named 'label' if it already exists. The parameter " | horn_design_bradius_inner" specifies the helix's radius at the beginning of the helix, and radius_outer specifies the radius at the end of the helix. If the Boolean parameter "helixl_dir" is 1, the helical curve will be drawn counter-clockwise. ====horn_design_a==== SYNTAX: horn_design_a({{ArgTypeReal}} D0_dB,{{ArgTypeReal}} a_lambda,{{ArgTypeReal}} b_lambda)| style="widthEXAMPLE:150px;" | EMAG Python function''horn_design_a(15,0.4,0.3)''| style="widthDESCRIPTION:250px;" | Returns Computes and returns the wavelength-normalized smaller larger dimension of the aperture of an optimal pyramidal horn antenna | style="width:250px;" | with directivity D0_dB: directivity d, a_lambda: and wavelength-normalized larger dimension of the feed waveguidedimensions a_lambda and b_lambda. ====horn_design_b==== SYNTAX: horn_design_b({{ArgTypeReal}} D0_dB, {{ArgTypeReal}} a_lambda, {{ArgTypeReal}} b_lambda) EXAMPLE: ''horn_design_b(15,0.4,0.3)'' DESCRIPTION: Computes and returns the wavelength-normalized smaller dimension of the aperture of an optimal pyramidal horn antenna with directivity D0_dB and wavelength-normalized feed waveguide dimensions a_lambda and b_lambda.|-| style="width===horn_design_l==== SYNTAX:100px;" | horn_design_l({{ArgTypeReal}} D0_dB,{{ArgTypeReal}} a_lambda,{{ArgTypeReal}} b_lambda)| style="widthEXAMPLE:150px;" | EMAG Python function''horn_design_l(15,0.4,0.3)''| style="widthDESCRIPTION:250px;" | Returns Computes and returns the wavelength-normalized length of an optimal pyramidal horn antenna with directivity D0_dB and wavelength-normalized feed waveguide dimensions a_lambda and b_lambda. | style====huygens_src==== SYNTAX: huygens_src({{ArgTypeString}} label, {{ArgTypeAny}} filename[, {{ArgTypeAny}} set_lcs, {{ArgTypeAny}} polarization, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} x_rot, {{ArgTypeAny}} y_rot, {{ArgTypeAny}} z_rot]) EXAMPLE: ''huygens_src("widthHS_1","Huygens_1.HUY",1,100,100,0,0,0,0)'' DESCRIPTION:250px;Creates a Huygens source. If the Huygens source 'label' already exists, its properties are modified. ====huygens_surface==== SYNTAX: huygens_surface({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2, {{ArgTypeAny}} xSamples, {{ArgTypeAny}} ySamples, {{ArgTypeAny}} zSamples) EXAMPLE: ''huygens_surface(" | D0_dBHS_1",-10,-10,-10,10,10,10,40,40,40)'' DESCRIPTION: directivity dCreates a Huygens surface observable. If the observable 'label' already exists, a_lambdaits properties are modified. ====huygens_surface_grid==== SYNTAX: wavelengthhuygens_surface_grid({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2) EXAMPLE: ''huygens_surface_grid("HS_1",-normalized larger dimension 10,-10,-10,10,10,10)'' DESCRIPTION: Creates a Huygens surface observable in [[EM.Tempo]]. If the observable 'label' already exists, its properties are modified. ====hyperbola==== SYNTAX: hyperbola({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} diam_x, {{ArgTypeAny}} diam_y, {{ArgTypeAny}} axial_length, {{ArgTypeAny}} half_only) EXAMPLE: ''hyperbola("Hyperbola _1",0,0,0,50,40,20,0)'' DESCRIPTION: Draws a hyperbola object in the project workspace under the currently activated material group node, or modifies the hyperbola named 'label' if it already exists. If the Boolean parameter "half_only" is 1, only half of the feed waveguidehyperbola will be drawn.  ====impedance_surface_group==== SYNTAX: impedance_surface_group({{ArgTypeString}} label, b_lambda{{ArgTypeAny}} z_real, {{ArgTypeAny}} z_imag) EXAMPLE: wavelength''impedance_surface_group("IMP_1",100,-normalized smaller dimension of 100)'' DESCRIPTION: Creates a impedance_surface group in [[EM.Illumina]]. If the feed waveguide impedance surface group 'label' already exists, the group is activated.|====impenetrable_surface_group==== SYNTAX: impenetrable_surface_group({{ArgTypeString}} label, {{ArgTypeAny}} eps, {{ArgTypeAny}} sigma) EXAMPLE: ''impenetrable_surface_group("Impenet_1",2.2,0.0001)'' DESCRIPTION: Creates an impenetrable surface group in [[EM.Terrano]]. If the impenetrable surface group 'label' already exists, the group is activated. ====import_dxf==== SYNTAX: import_dxf({{ArgTypeString}} file_name) EXAMPLE: ''import_dxf("MyDXFModel.DXF")'' DESCRIPTION: Imports an external DXF model file to the project workspace. If the file path is not specified, the current project folder is assumed as the path. ====import_igs==== SYNTAX: import_igs({{ArgTypeString}} file_name) EXAMPLE: ''import_igs("MyIGSModel.IGS")'' DESCRIPTION: Imports an external IGES model file to the project workspace. If the file path is not specified, the current project folder is assumed as the path. ====import_py==== SYNTAX: import_py({{ArgTypeString}} file_name) EXAMPLE: ''import_py("MyPYModel.PY")'' DESCRIPTION: Imports a Python geometry file to the project workspace. The default path is the Python subfolder under "Documents &rarr; EMAG". ====import_stl==== SYNTAX: import_stl({{ArgTypeString}} file_name) EXAMPLE: ''import_stl("MySTLModel.STL")'' DESCRIPTION: Imports an external STL model file to the project workspace. If the file path is not specified, the current project folder is assumed as the path. ====import_stp==== SYNTAX: import_stp({{ArgTypeString}} file_name) EXAMPLE: ''import_stp("MySTPModel.STP")'' DESCRIPTION: Imports an external STEP model file to the project workspace. If the file path is not specified, the current project folder is assumed as the path. ====inductance====
== EM.Cube's Python Functions for Geometric Object Creation ==SYNTAX: inductance({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2, {{ArgTypeAny}} x3, {{ArgTypeAny}} y3, {{ArgTypeAny}} z3, {{ArgTypeAny}} x4, {{ArgTypeAny}} y4, {{ArgTypeAny}} z4)
====boxEXAMPLE: ''inductance({{ArgTypeString}} label"FI_1", {{ArgTypeAny}} x00, {{ArgTypeAny}} y00, {{ArgTypeAny}} z0-10, {{ArgTypeAny}} base_x10, {{ArgTypeAny}} base_y0, {{ArgTypeAny}} height[10, {{ArgTypeAny}} cap_top2.5, {{ArgTypeAny}} cap_bottom]-2.5,0,7.5,2.5,0)====''
DESCRIPTION: Creates a inductance integral observable in [[EM.Ferma]]. If the observable 'label'Example: box("Box_1"already exists,0,0,0,50,50,100)''its properties are modified.
Description: Draws a box object in the project workspace under the currently activated material group node, or modifies the box named 'label' if it already exists.====inductor====
====cylinderSYNTAX: inductor({{ArgTypeString}} label, {{ArgTypeAny}} x0line_object, {{ArgTypeAny}} y0offset, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius, {{ArgTypeAny}} height[, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle, {{ArgTypeAny}} cap_top, {{ArgTypeAny}} cap_bottom]inductance_nH)====
EXAMPLE: ''Example: cylinderinductor("Cylinder_1Cap_1",0"Line_1",0,025,10,100)''
DescriptionDESCRIPTION: Draws Creates a cylinder object inductor in [[EM.Tempo]]. If the project workspace under the currently activated material group node, or modifies the cylinder named inductor 'label' if it already exists. The arguments start_angle and end_angle , its properties are in degrees and specify a sweep about the cylinder's azimuth axismodified.
====cone({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} base_radius, {{ArgTypeAny}} height[, {{ArgTypeAny}} top_radius, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle, {{ArgTypeAny}} cap_top, {{ArgTypeAny}} cap_bottom])intersect====
''ExampleSYNTAX: coneintersect("Cone_1"{{ArgTypeString}} label,0{{ArgTypeString}} object_1,0,0,30,40,20,0,180{{ArgTypeString}} object_2)''
DescriptionEXAMPLE: Draws a cone object in the project workspace under the currently activated material group node, or modifies the cone named 'label' if it already exists. The arguments start_angle and end_angle are in degrees and specify a sweep about the coneintersect("Intersection_Object","Rect_Strip1","Rect_Strip2")''s azimuth axis.
====pyramid({{ArgTypeString}} DESCRIPTION: Creates a Boolean object named 'label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} base_x, {{ArgTypeAny}} base_y, {{ArgTypeAny}} height)====' by intersecting object_1 and object_2. An error will be thrown if a Boolean object named 'label' already exists.
''Example: pyramid("Pyramid_1",0,0,0,10,10,100)''====line====
DescriptionSYNTAX: Draws a pyramid object in the project workspace under the currently activated material group node, or modifies the pyramid named 'line({{ArgTypeString}} label' if it already exists., {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} length[, {{ArgTypeAny}} dir])
====sphereEXAMPLE: ''line({{ArgTypeString}} label"my_line", {{ArgTypeAny}} x00, {{ArgTypeAny}} y00, {{ArgTypeAny}} z00, {{ArgTypeAny}} radius[100, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle]"x")====''
DESCRIPTION: Draws a Line object in the project workspace under the currently activated material group node, or modifies the line named 'label'Example: sphere(if it already exists. Without the argument "Sphere_1dir",0,0,0,10,0,180)''a vertical line is drawn by default.
Description: Draws a sphere object in the project workspace under the currently activated Material Group node, or modifies the sphere named 'label' if it already exists. The arguments start_angle and end_angle are in degrees and specify a sweep about the sphere's azimuth axis.====loft====
====ellipsoidSYNTAX: loft({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius_x, {{ArgTypeAny}} radius_y, {{ArgTypeAnyArgTypeString}} radius_z[object, {{ArgTypeAny}} start_angleloft_height, {{ArgTypeAny}} end_angle]cap_base)====
EXAMPLE: ''Example: ellipsoidloft("Ellipsoid_1Loft_1",0,0,0,100,100"Rect_Strip1",50,0,360)''
DescriptionDESCRIPTION: Draws an ellipsoid Creates or modifies a loft object in the project workspace under from a specified object by the currently activated material group nodespecified height. If modifying an existing loft object, or modifies the ellipsoid named 'label' if it already existspre-existing primitive is used. The arguments start_angle and end_angle are in degrees and specify This command can only loft objects that have a sweep about single face and will loft along the ellipsoidface's azimuth axisnormal.
====torus({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius_major, {{ArgTypeAny}} radius_minor[, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle])lumped_src====
''ExampleSYNTAX: toruslumped_src("Torus_1"{{ArgTypeString}} label,0{{ArgTypeAny}} line_object,0{{ArgTypeAny}} offset,0{{ArgTypeAny}} polarity[,50{{ArgTypeAny}} amplitude,20{{ArgTypeAny}} phase, {{ArgTypeAny}} resistance])''
DescriptionEXAMPLE: Draws an torus object in the project workspace under the currently activated material group node, or modifies the torus named 'label' if it already exists. The arguments start_angle and end_angle are in degrees and specify a sweep about the toruslumped_src("LS_1","Line_1",50,0)''s azimuth axis.
====rect_strip({{ArgTypeString}} DESCRIPTION: Creates a lumped source in [[EM.Tempo]]. If the lumped source 'label' already exists, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} side_x, {{ArgTypeAny}} side_y)====its properties are modified.
''Example: rect_strip("my_rectangle",0,0,0,50,20)''====magnet_group====
DescriptionSYNTAX: Draws a rectangle Strip object in the project workspace under the currently activated material group node, or modifies the rectangle strip object named 'magnet_group({{ArgTypeString}} label' if it already exists., {{ArgTypeAny}} mu, {{ArgTypeAny}} Mx, {{ArgTypeAny}} My, {{ArgTypeAny}} Mz)
====circ_stripEXAMPLE: ''magnet_group({{ArgTypeString}} label"Magnet_1", {{ArgTypeAny}} x01, {{ArgTypeAny}} y00, {{ArgTypeAny}} z00, {{ArgTypeAny}} inner_radius, {{ArgTypeAny}} outer_radius[, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle]100)====''
DESCRIPTION: Creates a permanent magnet source group in [[EM.Ferma]]. If the magnet group 'label'Example: circ_strip("cs_1"already exists,0,0,0,50,0)''the group is activated.
Description: Draws a circle strip object in the project workspace under the currently activated material group node, or modifies the circle strip object named 'label' if it already exists. The arguments start_angle and end_angle are in degrees and specify a sweep about the circle strip's azimuth axis.====mcos====
====radial_stripSYNTAX: mcos({{ArgTypeStringArgTypeReal}} labelx, {{ArgTypeAnyArgTypeReal}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius, {{ArgTypeAny}} base_length, {{ArgTypeAny}} angler)====
EXAMPLE: ''Example: radial_stripmcos("Radial_1",0,0,0,50,0.5,902)''
DescriptionDESCRIPTION: Draws a radial strip object in Computes and returns the project workspace under the currently activated material group node, or modifies the radial strip object named 'label' if it already existssuper-quadratic cosine function of order r.
====ellipse_strip({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius_x, {{ArgTypeAny}} radius_y[, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle])mean====
''ExampleSYNTAX: ellipse_stripmean("es_1"{{ArgTypeReal}} x,0,0,0,50,0{{ArgTypeReal}} y)''
DescriptionEXAMPLE: Draws a ellipse strip object in the project workspace under the currently activated material group node, or modifies the ellipse strip object named 'label' if it already exists. The arguments start_angle and end_angle are in degrees and specify a sweep about the ellipse stripmean(1,2)''s azimuth axis.
====triangle_stripDESCRIPTION: Computes and returns the arithmetic mean of x and y: 0.5*({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} side1, {{ArgTypeAny}} side2, {{ArgTypeAny}} anglex+y)====.
''Example: triangle_strip("ts_1",0,0,0,50,100,90)''====merge_curve====
DescriptionSYNTAX: Draws a triangle strip object in the project workspace under the currently activated material group nodemerge_curve({{ArgTypeString}} object_1, or modifies the triangle strip object named 'label' if it already exists. {{ArgTypeString}} object_2)
====taper_stripEXAMPLE: ''merge_curve({{ArgTypeString}} label"Curve_1", {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} base_width, {{ArgTypeAny}} top_width, {{ArgTypeAny}} length, {{ArgTypeAny}} is_expo"Curve_2")====''
''ExampleDESCRIPTION: taper_strip("ts_1",0,0,0,50,100,80,1)''Merges two specified curve objects into a single curve.
Description: Draws a taper strip object in the project workspace under the currently activated material group node, or modifies the taper strip object named 'label' if it already exists. If the Boolean parameters "is_expo" is 1, an exponential taper will be drawn. ====mesh====
====polygon_regSYNTAX: mesh({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius, {{ArgTypeAny}} n_sides)====
''ExampleDESCRIPTION: polygon_reg("ts_1",0,0,0,50,100,80,1)''Generates and displays the mesh of the physical structure.
Description: Draws a regular polygon object in the project workspace under the currently activated material group node, or modifies the regular polygon object named 'label' if it already exists. ====microstrip_design====
====spiral_stripSYNTAX: microstrip_design({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAnyArgTypeReal}} z0, {{ArgTypeAny}} width, {{ArgTypeAny}} radius_inner, {{ArgTypeAny}} radius_outer, {{ArgTypeAny}} nturns, {{ArgTypeAny}} spiral_dir, {{ArgTypeAnyArgTypeReal}} is_dualer)====
EXAMPLE: ''Example: spiral_stripmicrostrip_design("Spiral _1",0,0,0,10,50,5,0,02.2)''
DescriptionDESCRIPTION: Draws a spiral strip object in Computes and returns the project workspace under the currently activated material group node, or modifies the spiral strip named 'label' if it already exists. If the Boolean parameter "spiral_dir" is 1, the spiral curve will be drawn counterwidth-clockwise. If the Boolean parameter "is_dual" is 1, to-height ratio of a dual-arm spiral curve will be drawnmicrostrip transmission line with characteristic impedance z0 in Ohms and substrate relative permittivity er.
====polystrip({{ArgTypeString}} label, {{ArgType| 3x1 Python tuple}} p0, {{ArgType| 3x1 Python tuple}} p1, ... {{ArgType| 3x1 Python tuple}} pn)microstrip_eps_eff====
''ExampleSYNTAX: polystripmicrostrip_eps_eff("ps_1"{{ArgTypeReal}} w,(0{{ArgTypeReal}} h,0,0),(1,0,0),(1,0,0){{ArgTypeReal}} er)''
DescriptionEXAMPLE: Creates or modifies a Polystrip object in the project workspace''microstrip_eps_eff(2,0. Each point is represented with a Python tuple type5,2. The poly_strip function is 2)'self-closing' -- there is no need to supply the first point again at the end of the point list.
====nurbs_strip({{ArgTypeString}} labelDESCRIPTION: Computes and returns the effective permittivity of a microstrip transmission line with width w, {{ArgType| 3x1 Python tuple}} p0, {{ArgType| 3x1 Python tuple}} p1, ..substrate height h and substrate relative permittivity er. {{ArgType| 3x1 Python tuple}} pn)====
''Example: nurbs_strip("ns_1",(0,0,0),(1,0,0),(1,0,0))''====microstrip_lambda_g====
DescriptionSYNTAX: Creates or modifies a NURBS Strip object in the project workspace. Each point is represented with a Python tuple type. The nurbs_strip function is 'self-closing' -- there is no need to supply the first point again at the end of the point list.microstrip_lambda_g({{ArgTypeReal}} w, {{ArgTypeReal}} h, {{ArgTypeReal}} er, {{ArgTypeReal}} freq_hertz)
====lineEXAMPLE: ''microstrip_lambda_g({{ArgTypeString}} label2, {{ArgTypeAny}} x00.5, {{ArgTypeAny}} y02.2, {{ArgTypeAny}} z0, {{ArgTypeAny}} length[, {{ArgTypeAny}} dir]2e9)====''
''ExampleDESCRIPTION: Computes and returns the guide wavelength (in meters) of a microstrip transmission line("my_line"with width w,0,0,0,100,"x")''substrate height h and substrate relative permittivity er at an operating frequency of freq_hertz.
Description: Draws a Line object in the project workspace under the currently activated material group node, or modifies the line named 'label' if it already exists. Without the argument "dir", a vertical line is drawn by default. ====microstrip_src====
====circleSYNTAX: microstrip_src({{ArgTypeString}} label, {{ArgTypeAny}} x0rect_object, {{ArgTypeAny}} y0height, {{ArgTypeAny}} z0edge[, {{ArgTypeAny}} radiusamplitude, {{ArgTypeAny}} start_anglephase, {{ArgTypeAny}} end_angleresistance])====
EXAMPLE: ''Example: circlemicrostrip_src("pyramid_1MS_1",0"Rect_1",01.5,0,10,10,100"+x")''
DescriptionDESCRIPTION: Draws Creates a circular curve object microstrip port source in [[EM.Tempo]]. If the project workspace under the currently activated material group node, or modifies the circle named microstrip port 'label' if it already exists. The parameters start_angle and end_angle , its properties are in degreesmodified.
====superquad({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} diam_x, {{ArgTypeAny}} diam_y, {{ArgTypeAny}} order)microstrip_z0====
''ExampleSYNTAX: superquadmicrostrip_z0("SuperQuad_1"{{ArgTypeReal}} w,0{{ArgTypeReal}} h,0,0,50,20,4{{ArgTypeReal}} er)''
DescriptionEXAMPLE: Draws a super-quadratic curve object in the project workspace under the currently activated material group node, or modifies the super-quadratic curve named 'label' if it already exists. If order = microstrip_z0(2, the curve reduces to an ellipse0. Higher order make the round edges sharper. An infinite order reduces the curve to a rectangle5,2. 2)''
====parabolaDESCRIPTION: Computes and returns the characteristic impedance ({{ArgTypeString}} labelin Ohms) of a microstrip transmission line with width w, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} focal_length, {{ArgTypeAny}} axial_length, {{ArgTypeAny}} half_only)====substrate height h and substrate relative permittivity er.
''Example: parabola("Parabola _1",0,0,0,50,20,0)''====microstrip_zoc====
DescriptionSYNTAX: Draws a parabola object in the project workspace under the currently activated material group nodemicrostrip_zoc({{ArgTypeReal}} w, or modifies the parabola named 'label' if it already exists. If the Boolean parameter "half_only" is 1{{ArgTypeReal}} l, only half of the parabola will be drawn. {{ArgTypeReal}} h, {{ArgTypeReal}} er, {{ArgTypeReal}} freq_hertz)
====hyperbolaEXAMPLE: ''microstrip_zoc({{ArgTypeString}} label2, {{ArgTypeAny}} x025, {{ArgTypeAny}} y00.5, {{ArgTypeAny}} z02.2, {{ArgTypeAny}} diam_x, {{ArgTypeAny}} diam_y, {{ArgTypeAny}} axial_length, {{ArgTypeAny}} half_only2e9)====''
''ExampleDESCRIPTION: hyperbolaComputes and returns the input reactance ("Hyperbola _1"in Ohms) of an open-circuited microstrip transmission line with width w,0length l,0,0,50,40,20,0)''substrate height h and substrate relative permittivity er at an operating frequency of freq_hertz.
Description: Draws a hyperbola object in the project workspace under the currently activated material group node, or modifies the hyperbola named 'label' if it already exists. If the Boolean parameter "half_only" is 1, only half of the hyperbola will be drawn. ====microstrip_zsc====
====spiral_curveSYNTAX: microstrip_zsc({{ArgTypeStringArgTypeReal}} labelw, {{ArgTypeAnyArgTypeReal}} x0l, {{ArgTypeAnyArgTypeReal}} y0h, {{ArgTypeAnyArgTypeReal}} z0er, {{ArgTypeAnyArgTypeReal}} radius_inner, {{ArgTypeAny}} radius_outer, {{ArgTypeAny}} nturns, {{ArgTypeAny}} spiral_dir, {{ArgTypeAny}} is_dualfreq_hertz)====
EXAMPLE: ''Example: spiral_curvemicrostrip_zsc("Spiral _1"2,025,0,0,10,50,.5,02.2,02e9)''
DescriptionDESCRIPTION: Draws Computes and returns the input reactance (in Ohms) of a spiral curve object in the project workspace under the currently activated material group nodeshort-circuited microstrip transmission line with width w, or modifies the spiral curve named 'label' if it already exists. If the Boolean parameter "spiral_dir" is 1length l, the spiral curve will be drawn counter-clockwise. If the Boolean parameter "is_dual" is 1, a dual-arm spiral curve will be drawnsubstrate height h and substrate relative permittivity er at an operating frequency of freq_hertz.
====helix({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius_inner, {{ArgTypeAny}} radius_outer, {{ArgTypeAny}} nturns, {{ArgTypeAny}} helix_dir)mirror====
''ExampleSYNTAX: helixmirror("Helix_1"{{ArgTypeString}} object,0{{ArgTypeAny}} x0,0{{ArgTypeAny}} y0,0{{ArgTypeAny}} z0,15{{ArgTypeAny}} uX,15{{ArgTypeAny}} uY,10,0{{ArgTypeAny}} uZ)''
DescriptionEXAMPLE: Draws a helical curve in the project workspace under the currently activated material group node, or modifies the helix named 'label' if it already exists. The parameter mirror("radius_innerpyramid_1" specifies the helix's radius at the beginning of the helix, and radius_outer specifies the radius at the end of the helix. If the Boolean parameter "helixl_dir" is 0,0,0,1, the helical curve will be drawn counter-clockwise. 0,0)''
====polyline({{ArgTypeString}} label, {{ArgType| 3x1 Python tuple}} p0, {{ArgType| 3x1 Python tuple}} p1, DESCRIPTION: Mirrors an object in a plane defined by the specified point coordinates and specified normal vector components... {{ArgType| 3x1 Python tuple}} pn)====
''Example: polyline("pl_1",(0,0,0),(1,0,0),(1,0,0))''====move_to====
DescriptionSYNTAX: Creates or modifies a PolyLine move_to({{ArgTypeString}} object in the project workspace. Each point is represented with a Python tuple type. The poly_line is closed if p0 is specified again as pn, otherwise {{ArgTypeString}} group_node_label[, it is open.{{ArgTypeString}} module_name])
====nurbs_curveEXAMPLE: ''move_to({{ArgTypeString}} label"NewObj", {{ArgType| 3x1 Python tuple}} p0"MyObj", {{ArgType| 3x1 Python tuple}} p110, ... {{ArgType| 3x1 Python tuple}} pn10,0)====''
''ExampleDESCRIPTION: nurbs_curve("nc_1",(0,0,0),(1,0,0),(1,0,0))''Transfers an object from its current material/object group node in the navigation tree to another node or optionally to another [[EM.Cube]] module.
Description: Creates or modifies a NURBS Curve object in the project workspace. Each point is represented with a Python tuple type. The curve is closed if p0 is specified again as pn, otherwise, it is open.====msin====
====pointSYNTAX: msin({{ArgTypeStringArgTypeReal}} labelx, {{ArgTypeAnyArgTypeReal}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0r)====
EXAMPLE: ''Example: pointmsin("Point_1",0,0.5,102)''
DescriptionDESCRIPTION: Draws a point in Computes and returns the project workspace under the currently activated material group node, or modifies the point named 'label' if it already existssuper-quadratic sine function of order r.
====fractal_tree({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} key_type, {{ArgTypeAny}} key_size, {{ArgTypeAny}} n_level, {{ArgTypeAny}} sep_angle, {{ArgTypeAny}} n_gen, {{ArgTypeAny}} prune_factor, {{ArgTypeAny}} thickness, {{ArgTypeAny}} thick_factor)nurbs_curve====
''ExampleSYNTAX: fractal_treenurbs_curve("Fractal_1"{{ArgTypeString}} label,0{{ArgType| 3x1 Python tuple}} p0,0{{ArgType| 3x1 Python tuple}} p1,0,"line",10,3,30,3,0,0,0... {{ArgType| 3x1 Python tuple}} pn)''
DescriptionEXAMPLE: Generates a fractal tree in the project workspace under the currently activated material group node''nurbs_curve("nc_1",(0,0,0),(1,0,0),(1,0, or modifies the fractal tree named 0))'label' if it already exists.
====param_curve({{ArgTypeString}} labelDESCRIPTION: Creates or modifies a NURBS Curve object in the project workspace. Each point is represented with a Python tuple type. The curve is closed if p0 is specified again as pn, {{ArgTypeAny}} x0otherwise, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} model, {{ArgTypeAny}} orientation, {{ArgTypeAny}} start, {{ArgTypeAny}} stop, {{ArgTypeAny}} step, {{ArgTypeAny}} function[, {{ArgTypeAny}} y(t), {{ArgTypeAny}} z(t)])====it is open.
''Example: param_curve("Curve_1",0,0,0,"parametric","xy",0,10,0.1,"cos(t)","sin(t)","t")''====nurbs_strip====
DescriptionSYNTAX: Generates a parametric curve in the project workspace under the currently activated material group node, or modifies the parametric curve named 'nurbs_strip({{ArgTypeString}} label' if it already exists, {{ArgType| 3x1 Python tuple}} p0, {{ArgType| 3x1 Python tuple}} p1, ...{{ArgType| 3x1 Python tuple}} pn)
====param_surfaceEXAMPLE: ''nurbs_strip({{ArgTypeString}} label"ns_1", {{ArgTypeAny}} x0(0, {{ArgTypeAny}} y00, {{ArgTypeAny}} z00), {{ArgTypeAny}} orientation(1, {{ArgTypeAny}} start10, {{ArgTypeAny}} stop10), {{ArgTypeAny}} step1(1, 0, {{ArgTypeAny}} start2, {{ArgTypeAny}} stop2, {{ArgTypeAny}} step2, {{ArgTypeAny}} function0))====''
''ExampleDESCRIPTION: param_surface("Surf_1",0,0,0,"xy",0,10,0Creates or modifies a NURBS Strip object in the project workspace.1,0,10,0Each point is represented with a Python tuple type.1,"sin(x)*sin(y)")The nurbs_strip function is 'self-closing'-- there is no need to supply the first point again at the end of the point list.
Description: Generates a parametric surface in the project workspace under the currently activated material group node, or modifies the parametric surface named 'label' if it already exists.====ohmic_loss====
====import_stlSYNTAX: ohmic_loss({{ArgTypeString}} file_namelabel, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2)====
EXAMPLE: ''Example: import_stlohmic_loss("MySTLModel.STLFI_1",-10,-10,-10,10,10,10)''
DescriptionDESCRIPTION: Imports Creates an external STL model file to the project workspaceohmic loss integral observable in [[EM.Ferma]]. If the file path is not specifiedobservable 'label' already exists, the current project folder is assumed as the pathits properties are modified.
====import_dxf({{ArgTypeString}} file_name)parabola====
''ExampleSYNTAX: import_dxfparabola("MyDXFModel.DXF"{{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} focal_length, {{ArgTypeAny}} axial_length, {{ArgTypeAny}} half_only)''
DescriptionEXAMPLE: Imports an external DXF model file to the project workspace. If the file path is not specified''parabola("Parabola _1", the current project folder is assumed as the path.0,0,0,50,20,0)''
====import_stp({{ArgTypeString}} file_name)====DESCRIPTION: Draws a parabola object in the project workspace under the currently activated material group node, or modifies the parabola named 'label' if it already exists. If the Boolean parameter "half_only" is 1, only half of the parabola will be drawn.
''Example: import_stp("MySTPModel.STP")''====param_curve====
DescriptionSYNTAX: Imports an external STEP param_curve({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} model file to the project workspace. If the file path is not specified, the current project folder is assumed as the path.{{ArgTypeAny}} orientation, {{ArgTypeAny}} start, {{ArgTypeAny}} stop, {{ArgTypeAny}} step, {{ArgTypeAny}} function[, {{ArgTypeAny}} y(t), {{ArgTypeAny}} z(t)])
====import_igsEXAMPLE: ''param_curve({{ArgTypeString}} file_name"Curve_1",0,0,0,"parametric","xy",0,10,0.1,"cos(t)","sin(t)","t")====''
DESCRIPTION: Generates a parametric curve in the project workspace under the currently activated material group node, or modifies the parametric curve named 'label'Example: import_igs("MyIGSModelif it already exists.IGS")''
Description: Imports an external IGES model file to the project workspace. If the file path is not specified, the current project folder is assumed as the path.====param_surface====
====import_pySYNTAX: param_surface({{ArgTypeString}} file_namelabel, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} orientation, {{ArgTypeAny}} start1, {{ArgTypeAny}} stop1, {{ArgTypeAny}} step1, , {{ArgTypeAny}} start2, {{ArgTypeAny}} stop2, {{ArgTypeAny}} step2, {{ArgTypeAny}} function)====
EXAMPLE: ''Example: import_pyparam_surface("MyPYModelSurf_1",0,0,0,"xy",0,10,0.PY1,0,10,0.1,"sin(x)*sin(y)")''
DescriptionDESCRIPTION: Imports Generates a Python geometry file to parametric surface in the project workspace. The default path is the Python subfolder under "Documents &rarr; EMAG"the currently activated material group node, or modifies the parametric surface named 'label' if it already exists.
====export_stl({{ArgTypeString}} file_name)pec_group====
''ExampleSYNTAX: export_stlpec_group("MySTLModel.STL"{{ArgTypeString}} label)''
DescriptionEXAMPLE: Exports the physical structure of the project workspacean to an STL model file. If the file path is not specified, the current project folder is assumed as the path.''pec_group("PEC_1")''
====export_dxf({{ArgTypeString}} file_name)====DESCRIPTION: Creates a PEC material group in the current module. If the PEC group 'label' already exists, the group is activated.
''Example: export_dxf("MyDXFModel.DXF")''====pec_via_group====
DescriptionSYNTAX: Exports the physical structure of the project workspacean to a DXF model file. If the file path is not specifiedpec_via_group({{ArgTypeString}} label, the current project folder is assumed as the path.{{ArgTypeAny}} host_layer)
====export_pyEXAMPLE: ''pec_via_group({{ArgTypeString}} file_name"PEC_1",10)====''
''ExampleDESCRIPTION: export_py("MyPYModelCreates an embedded PEC via set group in the current module.PY") If the PEC via group 'label'already exists, the group is activated.
Description: Exports the physical structure of the project workspace or the current object selection to a Python geometry file. The default path is the Python subfolder under "Documents &rarr; EMAG".====pec_voltage_group====
== EM.Cube's Python Functions for Geometric Object Transformation ==SYNTAX: pec_voltage_group({{ArgTypeString}} label, {{ArgTypeAny}} voltage)
====freezeEXAMPLE: ''pec_voltage_group({{ArgTypeString}} object"PEC_1", {{ArgTypeReal}} freeze_state10)====''
DESCRIPTION: Creates a fixed-potential PEC object group in the current module. If the PEC group 'label'Example: freeze("MyObj"already exists,1)''the group is activated.
Description: Sets the freeze state of an object (0/1). ====penetrable_surface_group====
====cloneSYNTAX: penetrable_surface_group({{ArgTypeString}} label, {{ArgTypeString}} object, {{ArgTypeRealArgTypeAny}} x0eps, {{ArgTypeRealArgTypeAny}} y0sigma, {{ArgTypeRealArgTypeAny}} z0thickness)====
EXAMPLE: ''Example: clonepenetrable_surface_group("NewObjPenet_1","MyObj"2.2,100.0001,10,01)''
DescriptionDESCRIPTION: Creates a copy of penetrable surface group in [[EM.Terrano]]. If the specified object and repositions it at penetrable surface group 'label' already exists, the given coordinatesgroup is activated.
====translate_by({{ArgTypeString}} object, {{ArgTypeReal}} x_dist, {{ArgTypeReal}} y_dist, {{ArgTypeReal}} z_dist)penetrable_volume_group====
''ExampleSYNTAX: translate_bypenetrable_volume_group("MyObj"{{ArgTypeString}} label,10{{ArgTypeAny}} eps,10,x{{ArgTypeAny}} sigma)''
DescriptionEXAMPLE: Translates an object by the specified distances in each direction''penetrable_volume_group("Vol_Penet_1",2.2,0.0001)''
====translate_to({{ArgTypeString}} objectDESCRIPTION: Creates a penetrable volume group in [[EM.Terrano]]. If the penetrable volume group 'label' already exists, {{ArgTypeReal}} x_dest, {{ArgTypeReal}} y_dest, {{ArgTypeReal}} z_dest)====the group is activated.
''Example: translate_to("MyObj",20,20,x2)''====pipe_sweep====
DescriptionSYNTAX: Translates an pipe_sweep({{ArgTypeString}} object to the specified destination., {{ArgTypeAny}} radius)
====rotateEXAMPLE: ''pipe_sweep({{ArgTypeString}} object"Curve_1", {{ArgTypeAny}} rot_angle_degree, {{ArgTypeAny}} rot_axis_x, {{ArgTypeAny}} rot_axis_y, {{ArgTypeAny}} rot_axis_z5)====''
''ExampleDESCRIPTION: rotate("Pyramid_1",45,1,1,0)''Creates a pipe version of a given curve object.
Description: Rotates an object about a line passing through its LCS center and aligned along the specified direction vector (rot_axis) by the specified angle.====planewave====
====scaleSYNTAX: planewave({{ArgTypeString}} objectlabel, {{ArgTypeAny}} scale_factortheta, {{ArgTypeAny}} phi, {{ArgTypeAny}} polarization)====
''ExampleEXAMPLE: scale''planewave("pyramid_1PW_1",2180,0,"tm")''
DescriptionDESCRIPTION: Scales an object by Creates a plane wave source. If the specified scale factorplane wave source 'label' already exists, its properties are modified.
====mirror({{ArgTypeString}} object, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} uX, {{ArgTypeAny}} uY, {{ArgTypeAny}} uZ)plot_file====
''ExampleSYNTAX: mirrorplot_file("pyramid_1",0,0,0,1,0,0{{ArgTypeString}} filename)''
DescriptionEXAMPLE: Mirrors an object in a plane defined by the specified point coordinates and specified normal vector components''plot_file("D0.DAT")''
====group({{ArgTypeString}} label, {{ArgTypeString}} object_1, {{ArgTypeString}} object_2, DESCRIPTION: Plots the contents of a specified data file in EM.Grid..)====
''Example: group("Composite_1","Box_1","Box_2","Box_3")''====pmc_group====
DescriptionSYNTAX: Groups a number of objects into a composite object with the given pmc_group({{ArgTypeString}} label.)
====arrayEXAMPLE: ''pmc_group({{ArgTypeString}} label, {{ArgTypeString}} object, {{ArgTypeAny}} x_count, {{ArgTypeAny}} y_count, {{ArgTypeAny}} z_count, {{ArgTypeAny}} x_spacing, {{ArgTypeAny}} y_spacing, {{ArgTypeAny}} z_spacing"PMC_1")====''
DESCRIPTION: Creates a PMC material group in the current module. If the PMC group 'label'Example: array("Array_1"already exists,"Rect_Strip_1",4,4,1,50,50,0)''the group is activated.
Description: Creates or modifies an array object.====point====
====array_customSYNTAX: point({{ArgTypeString}} label, {{ArgTypeString}} object, {{ArgTypeAny}} x_count, {{ArgTypeAny}} y_count, {{ArgTypeAny}} z_count, {{ArgTypeAny}} x_spacing, {{ArgTypeAny}} y_spacing, {{ArgTypeAny}} z_spacing, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} rot_x, {{ArgTypeAny}} rot_y, {{ArgTypeAny}} rot_z)====
EXAMPLE: ''Example: array_custompoint("Array_1Point_1","Rect_Strip_1",4,4,1,50,50,0,100,100,20,0,0,4510)''
DescriptionDESCRIPTION: Creates Draws a point in the project workspace under the currently activated material group node, or modifies an array object and sets its local coordinate system and rotation anglesthe point named 'label' if it already exists.
====explode({{ArgTypeString}} object)polygon_reg====
''ExampleSYNTAX: explodepolygon_reg("MyArray"{{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius, {{ArgTypeAny}} n_sides)''
DescriptionEXAMPLE: Explodes an object into its basic primitives.''polygon_reg("ts_1",0,0,0,50,100,80,1)''
====subtract({{ArgTypeString}} DESCRIPTION: Draws a regular polygon object in the project workspace under the currently activated material group node, or modifies the regular polygon object named 'label, {{ArgTypeString}} object_1, {{ArgTypeString}} object_2)====' if it already exists.
''Example: subtract("Subtract_Object","Rect_Strip1","Rect_Strip2")''====polygonize====
DescriptionSYNTAX: Creates a Boolean polygonize({{ArgTypeString}} object named 'label' by subtracting object_2 from object_1. An error will be thrown if a Boolean object named 'label' already exists., {{ArgTypeAny}} side_length)
====unionEXAMPLE: ''polygonize({{ArgTypeString}} label"Cric_1", {{ArgTypeString}} object_1, {{ArgTypeString}} object_22)====''
''ExampleDESCRIPTION: union("Union_Object","Rect_Strip1","Rect_Strip2")''Polygonizes the specified surface or curve object by the specified side length. The results is a polystrip or a polyline.
Description: Creates a Boolean object named 'label' by unioning object_1 and object_2. An error will be thrown if a Boolean object named 'label' already exists.====polyline====
====intersectSYNTAX: polyline({{ArgTypeString}} label, {{ArgTypeStringArgType| 3x1 Python tuple}} object_1p0, {{ArgTypeStringArgType| 3x1 Python tuple}} p1, ... {{ArgType| 3x1 Python tuple}} object_2pn)====
EXAMPLE: ''Example: intersectpolyline("Intersection_Objectpl_1","Rect_Strip1"(0,"Rect_Strip2"0,0),(1,0,0),(1,0,0))''
DescriptionDESCRIPTION: Creates or modifies a Boolean PolyLine object named 'label' by intersecting object_1 and object_2in the project workspace. An error will be thrown if Each point is represented with a Boolean object named 'label' already existsPython tuple type. The poly_line is closed if p0 is specified again as pn, otherwise, it is open.
====extrude({{ArgTypeString}} label, {{ArgTypeString}} object, {{ArgTypeAny}} extrude_height, {{ArgTypeAny}} cap_ends)polymesh====
''ExampleSYNTAX:extrudepolymesh("Extrude_1"{{ArgTypeString}} label,"Rect_Strip1"{{ArgTypeString}} object,50{{ArgTypeAny}} edge_length)''
DescriptionEXAMPLE: Creates or modifies an extrusion object from a specified object by the specified height. If modifying an existing extrusion object''polymesh("Poly_1", the pre-existing primitive is used. This command can only extrude objects that have a single face and will extrude along the face"Cric_1",2)''s normal.
====loft({{ArgTypeString}} label, {{ArgTypeString}} DESCRIPTION: Discretizes the specified solid or surface object, {{ArgTypeAny}} loft_height, {{ArgTypeAny}} cap_base)====by the specified edge length. The results is a polymesh object.
''Example: loft("Loft_1","Rect_Strip1",50)''====polystrip====
DescriptionSYNTAX: Creates or modifies a loft object from a specified object by the specified height. If modifying an existing loft objectpolystrip({{ArgTypeString}} label, the pre-existing primitive is used{{ArgType| 3x1 Python tuple}} p0, {{ArgType| 3x1 Python tuple}} p1, .. This command can only loft objects that have a single face and will loft along the face's normal.{{ArgType| 3x1 Python tuple}} pn)
====revolveEXAMPLE: ''polystrip({{ArgTypeString}} label"ps_1", {{ArgTypeString}} object(0, {{ArgTypeAny}} x00, {{ArgTypeAny}} y00), {{ArgTypeAny}} z0(1, {{ArgTypeAny}} uX0, {{ArgTypeAny}} uY0), {{ArgTypeAny}} uZ(1, {{ArgTypeAny}} rot_angle0,0))====''
''ExampleDESCRIPTION: revolve("Rev1","Line_1",0,0,0,0,0,1,360)Creates or modifies a Polystrip object in the project workspace. Each point is represented with a Python tuple type. The poly_strip function is 'self-closing'-- there is no need to supply the first point again at the end of the point list.
Description: Creates or modifies a revolution object from a specified object. If modifying an existing revolution object, the pre-existing primitive object is used. (x0,y0,z0) specifies the center of revolution, and (uX,uY,uZ) specifies the revolution axis. The revolution angle "rot_angle" is given in degrees.====port_definition_custom====
====consolidateSYNTAX: port_definition_custom({{ArgTypeString}} objectlabel, ({{ArgTypeString}} port_1_src_1, {{ArgTypeString}} port_1_src_2, ..., {{ArgTypeString}} port_1_impedance), ({{ArgTypeString}} port_2_src_1, {{ArgTypeString}} port_2_src_2, ..., {{ArgTypeString}} port_2_impedance), ...)====
EXAMPLE: ''Example: consolidateport_definition_custom("Poly_1PD_1",("LS_1","LS_2",50),,("LS_3","LS_4",50))''
DescriptionDESCRIPTION: Consolidates Creates a specified objectcustom port definition observable. If the observable 'label' already exists, its properties are modified.
====spline_fit({{ArgTypeString}} object)port_definition_default====
''ExampleSYNTAX: spline_fitport_definition_default("Poly_1"{{ArgTypeString}} label)''
DescriptionEXAMPLE: Applies spline fit transformation on a specified polymesh, polyline or polystrip object.''port_definition_default("PD_1")''
====fill_curve({{ArgTypeString}} object)====DESCRIPTION: Creates a default port definition observable. If the observable 'label' already exists, its properties are modified.
''Example: fill_curve("Curve_1")''====probe_gap_src====
DescriptionSYNTAX: Fill the interior of the specified closed curve object.probe_gap_src({{ArgTypeString}} label, {{ArgTypeAny}} via_object, {{ArgTypeAny}} polarity[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance])
====merge_curveEXAMPLE: ''probe_gap_src({{ArgTypeString}} object_1"Probe_1", {{ArgTypeString}} object_2"Via_1",0)====''
DESCRIPTION: Creates a probe gap circuit source in [[EM.Picasso]]. If the probe gap source 'label'Example: merge_curve("Curve_1"already exists,"Curve_2")''its properties are modified.
Description: Merges two specified curve objects into a single curve.====pyramid====
====close_curveSYNTAX: pyramid({{ArgTypeString}} label, {{ArgTypeStringArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} base_x, {{ArgTypeAny}} base_y, {{ArgTypeAny}} close_stateheight)====
EXAMPLE: ''Example: close_curvepyramid("Curve_1Pyramid_1",10,0,0,10,10,100)''
DescriptionDESCRIPTION: Sets the open/close state of Draws a polyline pyramid object in the project workspace under the currently activated material group node, or NURBS curve. Use 0 for open curve and 1 for close curvemodifies the pyramid named 'label' if it already exists.
====polygonize({{ArgTypeString}} object, {{ArgTypeAny}} side_length)radial_strip====
''ExampleSYNTAX: polygonizeradial_strip("Cric_1"{{ArgTypeString}} label,2{{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius, {{ArgTypeAny}} base_length, {{ArgTypeAny}} angle)''
DescriptionEXAMPLE: Polygonizes the specified surface or curve object by the specified side length. The results is a polystrip or a polyline.''radial_strip("Radial_1",0,0,0,50,0,90)''
====polymesh({{ArgTypeString}} label, {{ArgTypeString}} DESCRIPTION: Draws a radial strip objectin the project workspace under the currently activated material group node, {{ArgTypeAny}} edge_length)====or modifies the radial strip object named 'label' if it already exists.
''Example: polymesh("Poly_1","Cric_1",2)''====rail_sweep====
DescriptionSYNTAX: Discretizes the specified solid or surface object by the specified edge length. The results is a polymesh object.rail_sweep({{ArgTypeString}} rail_object, {{ArgTypeString}} sweep_object)
====filletEXAMPLE: ''rail_sweep({{ArgTypeString}} object"Curve_1", {{ArgTypeAny}} radius"Curve_2")====''
''ExampleDESCRIPTION: fillet("Rect_1",5)''Rail-sweeps the specified sweep object along the specified curve object.
Description: Fillets the corners of the specified surface or curve object by the specified radius.====ramp====
====sliceSYNTAX: ramp({{ArgTypeStringArgTypeReal}} object, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} uX, {{ArgTypeAny}} uY, {{ArgTypeAny}} uZx)====
EXAMPLE: ''Example: filletramp("Rect_1",0.5)''
DescriptionDESCRIPTION: Slices Computes and returns the specified object into two parts using the specified plane given by the point coordinates and normal vector coordinatesramp function: x if x>0, 0 if x<0.
====roughen({{ArgTypeString}} label, {{ArgTypeString}} object, {{ArgTypeAny}} rms_height, {{ArgTypeAny}} correl_length)rand====
''ExampleSYNTAX: roughenrand("Rect_1"{{ArgTypeReal}} x,1,5{{ArgTypeReal}} y)''
DescriptionEXAMPLE: Roughens the surface of the specified object based on the specified RMS height and correlation length.''rand(0,1)''
====random_group({{ArgTypeString}} label, {{ArgTypeString}} key_object, {{ArgTypeString}} container_object, {{ArgTypeAny}} element_count)====DESCRIPTION: Computes and returns a random number between x and y using an uniform distribution.
''Example: ====random_group("Rand_1","Rect_1","Box_1",100)''====
DescriptionSYNTAX: Creates a random group using the specified key object and confines them in the specified container object.random_group({{ArgTypeString}} label, {{ArgTypeString}} key_object, {{ArgTypeString}} container_object, {{ArgTypeAny}} element_count)
====strip_sweepEXAMPLE: ''random_group({{ArgTypeString}} object"Rand_1", {{ArgTypeAny}} width"Rect_1","Box_1",100)====''
''ExampleDESCRIPTION: strip_sweep("Curve_1",5)''Creates a random group using the specified key object and confines them in the specified container object.
Description: Creates a strip version of a given curve object.====rcs_bistatic====
====pipe_sweepSYNTAX: rcs_bistatic({{ArgTypeString}} objectlabel, {{ArgTypeAny}} radiustheta_incr, {{ArgTypeAny}} phi_incr[, {{ArgTypeAny}} frequency])====
EXAMPLE: ''Example: pipe_sweeprcs_bistatic("Curve_1RCS_1",51,1)''
DescriptionDESCRIPTION: Creates a pipe version of a given curve objectbistatic RCS observable. The frequency can also be optionally specified for [[EM.Tempo]]. If the observable 'label' already exists, its properties are modified.
====rail_sweep({{ArgTypeString}} rail_object, {{ArgTypeString}} sweep_object)rcs_monostatic====
''ExampleSYNTAX: rail_sweeprcs_monostatic("Curve_1"{{ArgTypeString}} label,"Curve_2"{{ArgTypeAny}} theta_incr, {{ArgTypeAny}} phi_incr[, {{ArgTypeAny}} frequency])''
DescriptionEXAMPLE: Rail-sweeps the specified sweep object along the specified curve object.''rcs_monostatic("RCS_1",1,1)''
== DESCRIPTION: Creates a monostatic RCS observable. The frequency can also be optionally specified for [[EM.CubeTempo]]. If the observable 's Python Functions for Material or Object Group Creation ==label' already exists, its properties are modified.
====activate({{ArgTypeString}} group_node_label)receiver_set====
''ExampleSYNTAX: activatereceiver_set("Color_1"{{ArgTypeString}} label, {{ArgTypeAny}} base_point_set[, {{ArgTypeAny}} pattern_file, {{ArgTypeAny}} rot_x, {{ArgTypeAny}} rot_y, {{ArgTypeAny}} rot_z)''
DescriptionEXAMPLE: Activates a color''receiver_set("TX_1", material or object group in the current active [[EM.Cube]] module"PT_1","DPL_STD. RAD",0,90,0)''
====color_group({{ArgTypeString}} DESCRIPTION: Creates a receiver set in [[EM.Terrano]]. If the receiver set 'label)====' already exists, its properties are modified.
''Example: color_group("Color_1")''====rect====
DescriptionSYNTAX: Creates a color group in CubeCAD module. If the color group 'label' already exists, the group is activated.rect({{ArgTypeReal}} x)
====pec_groupEXAMPLE: ''rect({{ArgTypeString}} label0.1)====''
''ExampleDESCRIPTION: pec_group("PEC_1")''Computes and returns the rectangular window function: 1 if x<0.5, 0 elsewhere.
Description: Creates a PEC material group in the current module. If the PEC group 'label' already exists, the group is activated.====rect_gap_src====
====pec_voltage_groupSYNTAX: rect_gap_src({{ArgTypeString}} label, {{ArgTypeAny}} voltagerect_object, {{ArgTypeAny}} offset, {{ArgTypeAny}} polarity[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance])====
EXAMPLE: ''Example: pec_voltage_grouprect_gap_src("PEC_1GAP_1",10"Rect_1",0,0)''
DescriptionDESCRIPTION: Creates a fixed-potential PEC object group strip gap circuit source in the current module[[EM.Picasso]] or [[EM.Libera]]. If the PEC group strip gap source 'label' already exists, the group is activatedits properties are modified.
====pec_via_group({{ArgTypeString}} label, {{ArgTypeAny}} host_layer)rect_strip====
''ExampleSYNTAX: pec_via_grouprect_strip("PEC_1"{{ArgTypeString}} label,10{{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} side_x, {{ArgTypeAny}} side_y)''
DescriptionEXAMPLE: Creates an embedded PEC via set group in the current module. If the PEC via group 'label' already existsrect_strip("my_rectangle", the group is activated.0,0,0,50,20)''
====thinwire_group({{ArgTypeString}} labelDESCRIPTION: Draws a rectangle Strip object in the project workspace under the currently activated material group node, {{ArgTypeAny}} radius)====or modifies the rectangle strip object named 'label' if it already exists.
''Example: thinwire_group("Thinwire_1",4)''====rename====
DescriptionSYNTAX: Creates a Thinwire material group in the current module. If the thin wire group 'label' already existsrename({{ArgTypeString}} new_label, the group is activated.{{ArgTypeString}} old_label)
====pmc_groupEXAMPLE: ''rename({{ArgTypeString}} label"Box_2","Box_1")====''
''ExampleDESCRIPTION: pmc_group("PMC_1")''Deletes a node name from the navigation tree. The node can be any geometric object, source, observable or material group.
Description: Creates a PMC material group in the current module. If the PMC group 'label' already exists, the group is activated.====resistance====
====slot_groupSYNTAX: resistance({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2, {{ArgTypeAny}} x3, {{ArgTypeAny}} y3, {{ArgTypeAny}} z3, {{ArgTypeAny}} x4, {{ArgTypeAny}} y4, {{ArgTypeAny}} z4)====
EXAMPLE: ''Example: slot_groupresistance("PMC_1FI_1",0,0,-10,0,0,10,-10,-10,0,10,10,0)''
DescriptionDESCRIPTION: Creates a slot trace group resistance integral observable in the current module[[EM.Ferma]]. If the slot trace group observable 'label' already exists, the group is activatedits properties are modified.
====dielectric_group({{ArgTypeString}} label, {{ArgTypeAny}} eps, {{ArgTypeAny}} sigma, {{ArgTypeAny}} mu, {{ArgTypeAny}} rho)resistor====
''ExampleSYNTAX: dielectric_groupresistor("Dielectric_1"{{ArgTypeString}} label,"my_eps"{{ArgTypeAny}} line_object,0{{ArgTypeAny}} offset,1,0{{ArgTypeAny}} resistance)''
DescriptionEXAMPLE: Creates a dielectric material group in the current module with the specified material properties. If the dielectric group 'label' already existsresistor("Res_1", the group is activated."Line_1",25,50)''
====impenetrable_surface_group({{ArgTypeString}} DESCRIPTION: Creates a resistor in [[EM.Tempo]]. If the resistor 'label' already exists, {{ArgTypeAny}} eps, {{ArgTypeAny}} sigma)====its properties are modified.
''Example: impenetrable_surface_group("Impenet_1",2.2,0.0001)''====revolve====
DescriptionSYNTAX: Creates an impenetrable surface group in [[EM.Terrano]]. If the impenetrable surface group 'revolve({{ArgTypeString}} label' already exists, the group is activated.{{ArgTypeString}} object, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} uX, {{ArgTypeAny}} uY, {{ArgTypeAny}} uZ, {{ArgTypeAny}} rot_angle)
====penetrable_surface_groupEXAMPLE: ''revolve({{ArgTypeString}} label"Rev1", {{ArgTypeAny}} eps"Line_1", {{ArgTypeAny}} sigma0, {{ArgTypeAny}} thickness0,0,0,0,1,360)====''
''ExampleDESCRIPTION: penetrable_surface_group("Penet_1",2Creates or modifies a revolution object from a specified object.2If modifying an existing revolution object,0the pre-existing primitive object is used.0001(x0, 1y0,z0)''specifies the center of revolution, and (uX,uY,uZ) specifies the revolution axis. The revolution angle "rot_angle" is given in degrees.
Description: Creates a penetrable surface group in [[EM.Terrano]]. If the penetrable surface group 'label' already exists, the group is activated.====rosen====
====penetrable_volume_groupSYNTAX: rosen({{ArgTypeStringArgTypeReal}} labelx, {{ArgTypeAnyArgTypeReal}} epsy, {{ArgTypeAnyArgTypeReal}} sigmaa, {{ArgTypeReal}} b)====
EXAMPLE: ''Example: penetrable_volume_grouprosen("Vol_Penet_1",20.25,0.0001,1,2)''
DescriptionDESCRIPTION: Creates a penetrable volume group in [[EM.Terrano]]. If Computes and returns the penetrable volume group 'label' already exists, the group is activatedRosenbrock function: (a-x)**2 + b*(y-x**2)**2.
====terrain_group({{ArgTypeString}} label, {{ArgTypeAny}} eps, {{ArgTypeAny}} sigma)rotate====
''ExampleSYNTAX: terrain_grouprotate("Terrain_1"{{ArgTypeString}} object,5.0{{ArgTypeAny}} rot_angle_degree,0.0001{{ArgTypeAny}} rot_axis_x, {{ArgTypeAny}} rot_axis_y, {{ArgTypeAny}} rot_axis_z)''
DescriptionEXAMPLE: Creates an terrain surface group in [[EM.Terrano]]. If the terrain surface group 'label' already existsrotate("pyramid_1", the group is activated.45,1,1,0)''
====base_point_groupDESCRIPTION: Rotates an object about a line passing through its LCS center and aligned along the specified direction vector ({{ArgTypeString}} labelrot_axis)====by the specified angle.
''Example: base_point_set("BP_Set_1")''====roughen====
DescriptionSYNTAX: Creates a base point set in [[EM.Terrano]]. If the base point set group 'roughen({{ArgTypeString}} label' already exists, the group is activated.{{ArgTypeString}} object, {{ArgTypeAny}} rms_height, {{ArgTypeAny}} correl_length)
====virtual_groupEXAMPLE: ''roughen({{ArgTypeString}} label"Rect_1",1,5)====''
''ExampleDESCRIPTION: virtual_group("VIR_1")''Roughens the surface of the specified object based on the specified RMS height and correlation length.
Description: Creates a virtual object group in [[EM.Terrano]]. If the virtual group 'label' already exists, the group is activated.====run_analysis====
====impedance_surface_groupSYNTAX: run_analysis({{ArgTypeString}} label, {{ArgTypeAny}} z_real, {{ArgTypeAny}} z_imag)====
''ExampleDESCRIPTION: impedance_surface_group("IMP_1",100,-100)''Runs a simulation in the current active [[EM.Cube]] computational module.
Description: Creates a impedance_surface group in [[EM.Illumina]]. If the impedance surface group 'label' already exists, the group is activated.====save_data====
====conductive_sheet_groupSYNTAX: save_data({{ArgTypeString}} label, {{ArgTypeAny}} sigma, {{ArgTypeAny}} thicknessdirectory_name)====
EXAMPLE: ''Example: conductive_sheet_groupsave_data("Cond_1Simulation_Data",100, 0.01)''
DescriptionDESCRIPTION: Creates a conductive sheet group in Saves [[EM.PicassoCube]]. If the conductive sheet group 'label' already exists, s output simulation data files under the group is activatedspecified directory.
====charge_group({{ArgTypeString}} label, {{ArgTypeAny}} density)sawtooth====
''ExampleSYNTAX: charge_groupsawtooth("Charge_1",-1e-5{{ArgTypeReal}} x)''
DescriptionEXAMPLE: Creates a volume charge source group in [[EM.Ferma]]. If the charge group 'label' already exists, the group is activatedsawtooth(0.5)''
DESCRIPTION: Computes and returns the ascending periodic sawtooth function of period T ====magnet_group({{ArgTypeString}} label2, {{ArgTypeAny}} mu, {{ArgTypeAny}} Mx, {{ArgTypeAny}} My, {{ArgTypeAny}} Mz)===oscillating between two values +1 and -1 and having a zero value of at x =0.
''Example: magnet_group("Magnet_1",1,0,0,100)''====scale====
DescriptionSYNTAX: Creates a permanent magnet source group in [[EM.Ferma]]. If the magnet group 'label' already existsscale({{ArgTypeString}} object, the group is activated.{{ArgTypeAny}} scale_factor)
====volume_current_groupEXAMPLE: ''scale({{ArgTypeString}} label"pyramid_1", {{ArgTypeAny}} Jx, {{ArgTypeAny}} Jy, {{ArgTypeAny}} Jz2)====''
''ExampleDESCRIPTION: volume_current_group("Magnet_1",0,0,1e6)''Scales an object by the specified scale factor.
Description: Creates a volume current source group in [[EM.Ferma]]. If the volume current group 'label' already exists, the group is activated.====select_module====
====wire_current_groupSYNTAX: select_module({{ArgTypeString}} label, {{ArgTypeAny}} current, {{ArgTypeAny}} wire_radiusmodule_name)====
EXAMPLE: ''Example: wire_current_groupselect_module("Magnet_1",1,0[[EM.5Tempo]]")''
DescriptionDESCRIPTION: Creates a wire current source group in Selects and sets [[EM.FermaCube]]. If the wire current group 'label' already exists, the group is activateds active module.
== EM.Cube's Python Functions for Source & Lumped Device Definition ==set_bandwidth====
====lumped_srcSYNTAX: set_bandwidth({{ArgTypeString}} label, {{ArgTypeAny}} line_object, {{ArgTypeAny}} offset, {{ArgTypeAny}} polarity[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance]value)====
EXAMPLE: ''Example: lumped_srcset_bandwidth("LS_1","Line_1",50,01e9)''
DescriptionDESCRIPTION: Creates a lumped source in Sets [[EM.TempoCube]]. If the lumped source 'label' already exists, its properties are modifieds frequency bandwidth.
====distributed_src({{ArgTypeString}} label, {{ArgTypeAny}} rect_object, {{ArgTypeAny}} field_dir, {{ArgTypeAny}} profile[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance])set_boundary_conditions====
''ExampleSYNTAX: distributed_srcset_boundary_conditions("DS_1"{{ArgTypeString}} xn_type,"Rect_1"{{ArgTypeString}} xp_type,"+y"{{ArgTypeString}} yn_type,"uniform"{{ArgTypeString}} yp_type, {{ArgTypeString}} zn_type, {{ArgTypeString}} zp_type)''
DescriptionEXAMPLE: Creates a distributed source in [[EM.Tempo]]. If the distributed source 'label' already existsset_domain_offset_lambda("pml", its properties are modified."pml","pml","pml","pec","pml")''
====microstrip_src({{ArgTypeString}} label, {{ArgTypeAny}} rect_object, {{ArgTypeAny}} height, {{ArgTypeAny}} edgeDESCRIPTION: Sets [[EM.Tempo]]'s domain boundary conditions domain offset on the &plusmn;X, {{ArgTypeAny}} amplitude&plusmn;Y and &plusmn;Z boundary walls. The options are "pec", {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance])===="pmc" and "pml".
''Example: microstrip_src("MS_1","Rect_1",1.5,"+x")''====set_domain_offset====
DescriptionSYNTAX: Creates a microstrip port source in [[EM.Tempo]]. If the microstrip port 'label' already existsset_domain_offset({{ArgTypeAny}} dxn_offset, its properties are modified.{{ArgTypeAny}} dxp_offset, {{ArgTypeAny}} dyn_offset, {{ArgTypeAny}} dyp_offset, {{ArgTypeAny}} dzn_offset, {{ArgTypeAny}} dzp_offset)
====cpw_srcEXAMPLE: ''set_domain_offset({{ArgTypeString}} label20, {{ArgTypeAny}} rect_object20, {{ArgTypeAny}} spacing20, {{ArgTypeAny}} edge[20, {{ArgTypeAny}} amplitude0, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance]10)====''
''ExampleDESCRIPTION: cpw_src("CPW_1"Sets the domain offset values along the &plusmn;X,"Rect_1",1&plusmn;Y and &plusmn;Z directions in project units.5,"+x")''
Description: Creates a CPW port source in [[EM.Tempo]]. If the CPW port 'label' already exists, its properties are modified.====set_domain_offset_lambda====
====coaxial_srcSYNTAX: set_domain_offset_lambda({{ArgTypeString}} label, {{ArgTypeAny}} cylinder_objectdxn_offset, {{ArgTypeAny}} outer_radiusdxp_offset, {{ArgTypeAny}} edge[dyn_offset, {{ArgTypeAny}} amplitudedyp_offset, {{ArgTypeAny}} phasedzn_offset, {{ArgTypeAny}} resistance]dzp_offset)====
EXAMPLE: ''Example: coaxial_srcset_domain_offset_lambda("COAX_1"0.1,"Cyl_1"0.1,0.1,0.51,"+z"0,0.25)''
DescriptionDESCRIPTION: Creates a coaxial port source in [[EM.Tempo]]. If Sets the coaxial port 'label' already existsdomain offset values along the &plusmn;X, its properties are modified&plusmn;Y and &plusmn;Z directions in free-space wavelengths.
====waveguide_src({{ArgTypeString}} label, {{ArgTypeAny}} box_object, {{ArgTypeAny}} offset, {{ArgTypeAny}} is_negative[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance])set_frequency====
''ExampleSYNTAX: waveguide_srcset_frequency("WG_1","Box_1",50,0{{ArgTypeAny}} value)''
DescriptionEXAMPLE: Creates a waveguide port source in [[EM.Tempo]]. If the waveguide port 'label' already exists, its properties are modifiedset_frequency(2.4e9)''
====wire_gap_src({{ArgTypeString}} label, {{ArgTypeAny}} line_object, {{ArgTypeAny}} offset, {{ArgTypeAny}} polarityDESCRIPTION: Sets [, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance[EM.Cube]])===='s center frequency.
''Example: wire_gap_src("WIG_1","Line_1",50,0)''====set_lcs_link====
DescriptionSYNTAX: Creates a wire gap circuit source in [[EM.Libera]]. If the wire gap source 'label' already existsset_lcs_link({{ArgTypeString}} object, its properties are modified.{{ArgTypeString}} lcs_obj, {{ArgTypeAny}} x_off, {{ArgTypeAny}} y_off, {{ArgTypeAny}} z_off)
====rect_gap_srcEXAMPLE: ''set_lcs_link({{ArgTypeString}} label"pyramid_1", {{ArgTypeAny}} rect_object"box_1", {{ArgTypeAny}} offset50, {{ArgTypeAny}} polarity[50, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance]0)====''
''ExampleDESCRIPTION: rect_gap_src("GAP_1","Rect_1",0,0)''Links the LCS of the first object to the LCS of the second object by the specified offset values along the three axes.
Description: Creates a strip gap circuit source in [[EM.Picasso]] or [[EM.Libera]]. If the strip gap source 'label' already exists, its properties are modified.====set_periodic====
====probe_gap_srcSYNTAX: set_periodic({{ArgTypeString}} label, {{ArgTypeAny}} via_object, {{ArgTypeAny}} polarity[, {{ArgTypeAny}} amplitudeis_periodic, {{ArgTypeAny}} phasespacingX, {{ArgTypeAny}} resistance]spacingY)====
EXAMPLE: ''Example: probe_gap_srcset_periodic("Probe_1"1,"Via_1"50,050)''
DescriptionDESCRIPTION: Creates a probe gap circuit source in [[EM.Picasso]]. If Designates the probe gap source 'label' already exists, its properties are modifiedphysical structure as periodic and sets the periods along the X and Y directions.
====wave_port({{ArgTypeString}} label, {{ArgTypeAny}} rect_object, {{ArgTypeAny}} offset, {{ArgTypeAny}} is_negative[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance])set_rot====
''ExampleSYNTAX: wave_portset_rot("WP_1"{{ArgTypeString}} object,"Rect_1"{{ArgTypeAny}} rot_x,0{{ArgTypeAny}} rot_y,0{{ArgTypeAny}} rot_z)''
DescriptionEXAMPLE: Creates a scattering wave port source in [[EM.Picasso]] or [[EM.Libera]]. If the wave port 'label' already existsset_rot("pyramid_1", its properties are modified.0,0,45)''
====short_dipole({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} length, {{ArgTypeAny}} uX, {{ArgTypeAny}} uY, {{ArgTypeAny}} uZ, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase)====DESCRIPTION: Sets the three rotation angles of an object.
''Example: wave_port("SD_1",0,0,50,3,0,0,1,1,0)''====set_rot_link====
DescriptionSYNTAX: Creates a Hertzian short dipole source. If the short dipole source 'label' already existsset_rot_link({{ArgTypeString}} object, its properties are modified.{{ArgTypeString}} lcs_obj, {{ArgTypeAny}} x_off_deg, {{ArgTypeAny}} y_off_deg, {{ArgTypeAny}} z_off_deg)
====planewaveEXAMPLE: ''set_rot_link({{ArgTypeString}} label"pyramid_1", {{ArgTypeAny}} theta"box_1", {{ArgTypeAny}} phi0, {{ArgTypeAny}} polarization0,45)====''
''ExampleDESCRIPTION: planewave("PW_1",180,0,"tm")''Links the rotation angles of the LCS of the first object to the rotation angles of the LCS of the second object by the specified angle offset values in degrees along the three axes.
Description: Creates a plane wave source. If the plane wave source 'label' already exists, its properties are modified.====set_stackup_order====
====gauss_beamSYNTAX: set_stackup_order("THS", {{ArgTypeString}} labellabel_1, {{ArgTypeAnyArgTypeString}} thetalabel_2, {{ArgTypeAny}} phi..., {{ArgTypeAnyArgTypeString}} polarizationlabel_n, {{ArgTypeAny}} focus_x, {{ArgTypeAny}} focus_y, {{ArgTypeAny}} focus_z, {{ArgTypeAny}} radius, {{ArgTypeAny}} p_mode, {{ArgTypeAny}} q_mode"BHS")====
EXAMPLE: ''Example: gauss_beambackground_layer("PW_1THS",180"Top_Layer",0"Mid_Layer","tmBottom_Layer",0,0,0,20,0,0"BHS")''
DescriptionDESCRIPTION: Creates a Gaussian beam source in Sets the hierarchy of [[EM.TempoPicasso]]'s background layer stackup from top to bottom. If The sequence should always start with "THS" standing for the Gaussian beam source 'label' already exists, its properties are modifiedtop half-space and must end in "BHS" standing for the bottom half-space. All the intermediate finite-thickness substrate layers must be included and listed in the right order.
====huygens_src({{ArgTypeString}} label, {{ArgTypeAny}} filename[, {{ArgTypeAny}} set_lcs, {{ArgTypeAny}} polarization, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} x_rot, {{ArgTypeAny}} y_rot, {{ArgTypeAny}} z_rot])set_units====
''ExampleSYNTAX: huygens_srcset_units("HS_1","Huygens_1.HUY",1,100,100,0,0,0,0{{ArgTypeString}} units)''
DescriptionEXAMPLE: Creates a Huygens source. If the Huygens source 'label' already exists, its properties are modified.set_units("meter")''
====transmitter_set({{ArgTypeString}} label, {{ArgTypeAny}} base_point_setDESCRIPTION: Sets [, {{ArgTypeAny}} pattern_file, {{ArgTypeAny}} rot_x, {{ArgTypeAny}} rot_y, {{ArgTypeAny}} rot_z)====[EM.Cube]]'s project length units.
''Example: transmitter_set("TX_1","PT_1","DPL_STD.RAD",0,90,0)''====sgn====
DescriptionSYNTAX: Creates a transmitter set in [[EM.Terrano]]. If the transmitter set 'label' already exists, its properties are modified.sgn({{ArgTypeReal}} x)
====resistorEXAMPLE: ''sgn({{ArgTypeString}} label, {{ArgTypeAny}} line_object, {{ArgTypeAny}} offset, {{ArgTypeAny}} resistance-1.0)====''
''ExampleDESCRIPTION: resistor("Res_1","Line_1",25Computes and returns the signum function: 1 if x>0,50)''-1 if x<0.
Description: Creates a resistor in [[EM.Tempo]]. If the resistor 'label' already exists, its properties are modified.====short_dipole====
====capacitorSYNTAX: short_dipole({{ArgTypeString}} label, {{ArgTypeAny}} line_objectx0, {{ArgTypeAny}} offsety0, {{ArgTypeAny}} capacitance_pFz0, {{ArgTypeAny}} length, {{ArgTypeAny}} uX, {{ArgTypeAny}} uY, {{ArgTypeAny}} uZ, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase)====
EXAMPLE: ''Example: capacitorshort_dipole("Cap_1SD_1","Line_1"0,0,50,3,0,0,1,251,100)''
DescriptionDESCRIPTION: Creates a capacitor in [[EM.Tempo]]Hertzian short dipole source. If the capacitor short dipole source 'label' already exists, its properties are modified.
====inductor({{ArgTypeString}} label, {{ArgTypeAny}} line_object, {{ArgTypeAny}} offset, {{ArgTypeAny}} inductance_nH)sigmoid====
''ExampleSYNTAX: inductorsigmoidnc("Cap_1"{{ArgTypeReal}} x,"Line_1",25,10{{ArgTypeReal}} a)''
DescriptionEXAMPLE: Creates a inductor in [[EM.Tempo]]. If the inductor 'label' already exists, its properties are modifiedsigmoid(0.5,1)''
====diodeDESCRIPTION: Computes and returns the sigmoid function of slope a: 2/({{ArgTypeString}} label, {{ArgTypeAny}} line_object, {{ArgTypeAny}} polarity, {{ArgTypeAny}} is_fA, {{ArgTypeAny}} temperature_K, {{ArgTypeAny}} ideality_factor1 + exp(-a*x))====- 1.
''Example: diode("Diode_1","Line_1",25,0,10,300,1)''====sinc====
DescriptionSYNTAX: Creates a diode in [[EM.Tempo]]. If the diode 'label' already exists, its properties are modified.sinc({{ArgTypeReal}} x)
== EMEXAMPLE: ''sinc(0.Cube5)''s Python Functions for Observable Definition ==
====port_definition_defaultDESCRIPTION: Computes and returns the sinc function: sin({{ArgTypeString}} labelpi*x)====/(pi*x).
''Example: port_definition_default("PD_1")''====slice====
DescriptionSYNTAX: Creates a default port definition observable. If the observable 'label' already existsslice({{ArgTypeString}} object, its properties are modified.{{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} uX, {{ArgTypeAny}} uY, {{ArgTypeAny}} uZ)
====port_definition_customEXAMPLE: ''slice({{ArgTypeString}} label"Rect_1", ({{ArgTypeString}} port_1_src_1, {{ArgTypeString}} port_1_src_2, ..., {{ArgTypeString}} port_1_impedance), ({{ArgTypeString}} port_2_src_1, {{ArgTypeString}} port_2_src_2, ..., {{ArgTypeString}} port_2_impedance), ...5)====''
''ExampleDESCRIPTION: port_definition_custom("PD_1",("LS_1","LS_2",50),,("LS_3","LS_4",50))''Slices the specified object into two parts using the specified plane given by the point coordinates and normal vector coordinates.
Description: Creates a custom port definition observable. If the observable 'label' already exists, its properties are modified.====slot_group====
====farfieldSYNTAX: slot_group({{ArgTypeString}} label, {{ArgTypeAny}} theta_incr, {{ArgTypeAny}} phi_incr)====
EXAMPLE: ''Example: farfieldslot_group("FF_1PMC_1",1,1)''
DescriptionDESCRIPTION: Creates a far-field radiation pattern observableslot trace group in the current module. If the observable slot trace group 'label' already exists, its properties are modifiedthe group is activated.
====rcs_bistatic({{ArgTypeString}} label, {{ArgTypeAny}} theta_incr, {{ArgTypeAny}} phi_incr)solution_plane====
''ExampleSYNTAX: rcs_bistaticsolution_plane("RCS_1"{{ArgTypeString}} label,1{{ArgTypeAny}} field_sensor_label,1{{ArgTypeAny}} is_quasi)''
DescriptionEXAMPLE: Creates a bistatic RCS observable. If the observable 'label' already existssolution_plane("FI_1", its properties are modified."FS_1",1)''
====current_dist({{ArgTypeString}} DESCRIPTION: Creates a 2D solution plane observable in [[EM.Ferma]]. If the observable 'label)====' already exists, its properties are modified.
''Example: current_dist("CD_1")''====sphere====
DescriptionSYNTAX: Creates a current distribution observable. If the observable 'sphere({{ArgTypeString}} label' already exists, its properties are modified.{{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius[, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle])
====field_sensorEXAMPLE: ''sphere({{ArgTypeString}} label"Sphere_1", {{ArgTypeAny}} dir_coordinate0, {{ArgTypeAny}} x00, {{ArgTypeAny}} y00, {{ArgTypeAny}} z010, {{ArgTypeAny}} xSize0, {{ArgTypeAny}} ySize, {{ArgTypeAny}} zSize, {{ArgTypeAny}} xSamples, {{ArgTypeAny}} ySamples, {{ArgTypeAny}} zSamples180)====''
''ExampleDESCRIPTION: field_sensor("FS_1"Draws a sphere object in the project workspace under the currently activated Material Group node,"z",0,0,0,100,100,0,25,25,0)or modifies the sphere named 'label'if it already exists. The arguments start_angle and end_angle are in degrees and specify a sweep about the sphere's azimuth axis.
Description: Creates a near-field sensor observable. If the observable 'label' already exists, its properties are modified.====spiral_curve====
====field_sensor_gridSYNTAX: spiral_curve({{ArgTypeString}} label, {{ArgTypeAny}} dir_coordinatex0, {{ArgTypeAny}} x0y0, {{ArgTypeAny}} y0z0, {{ArgTypeAny}} z0radius_inner, {{ArgTypeAny}} radius_outer, {{ArgTypeAny}} nturns, {{ArgTypeAny}} spiral_dir, {{ArgTypeAny}} is_dual)====
EXAMPLE: ''Example: field_sensor_gridspiral_curve("FS_1Spiral _1","z"0,0,0,10,50,5,0,0)''
DescriptionDESCRIPTION: Creates Draws a near-field sensor observable spiral curve object in [[EM.Tempo]] the project workspace under the currently activated material group node, or [[EM.Ferma]]. If modifies the observable spiral curve named 'label' if it already exists. If the Boolean parameter "spiral_dir" is 1, its properties are modifiedthe spiral curve will be drawn counter-clockwise. If the Boolean parameter "is_dual" is 1, a dual-arm spiral curve will be drawn.
====field_probe({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0)spiral_strip====
''ExampleSYNTAX: field_probespiral_strip("FS_1"{{ArgTypeString}} label,0{{ArgTypeAny}} x0,0{{ArgTypeAny}} y0,50{{ArgTypeAny}} z0, {{ArgTypeAny}} width, {{ArgTypeAny}} radius_inner, {{ArgTypeAny}} radius_outer, {{ArgTypeAny}} nturns, {{ArgTypeAny}} spiral_dir, {{ArgTypeAny}} is_dual)''
DescriptionEXAMPLE: Creates a temporal field probe observable in [[EM.Tempo]] or [[EM.Ferma]]. If the observable 'label' already existsspiral_strip("Spiral _1", its properties are modified.0,0,0,10,50,5,0,0)''
====receiver_set({{ArgTypeString}} DESCRIPTION: Draws a spiral strip object in the project workspace under the currently activated material group node, or modifies the spiral strip named 'label' if it already exists. If the Boolean parameter "spiral_dir" is 1, {{ArgTypeAny}} base_point_set[, {{ArgTypeAny}} pattern_file, {{ArgTypeAny}} rot_x, {{ArgTypeAny}} rot_ythe spiral curve will be drawn counter-clockwise. If the Boolean parameter "is_dual" is 1, {{ArgTypeAny}} rot_z)====a dual-arm spiral curve will be drawn.
''Example: receiver_set("TX_1","PT_1","DPL_STD.RAD",0,90,0)''====spline_fit====
DescriptionSYNTAX: Creates a receiver set in [[EM.Terrano]]. If the receiver set 'label' already exists, its properties are modified.spline_fit({{ArgTypeString}} object)
====huygens_surfaceEXAMPLE: ''spline_fit({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2, {{ArgTypeAny}} xSamples, {{ArgTypeAny}} ySamples, {{ArgTypeAny}} zSamples"Poly_1")====''
''ExampleDESCRIPTION: huygens_surface("HS_1"Applies spline fit transformation on a specified polymesh,-10,-10,-10,10,10,10,40,40,40)''polyline or polystrip object.
Description: Creates a Huygens surface observable. If the observable 'label' already exists, its properties are modified.====spline2====
====huygens_surface_gridSYNTAX: spline2({{ArgTypeStringArgTypeReal}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2x)====
EXAMPLE: ''Example: huygens_surface_gridspline2("HS_1",-10,-10,-10,10,10,101.0)''
DescriptionDESCRIPTION: Creates a Huygens surface observable in [[EM.Tempo]]. If Computes and returns the observable 'label' already exists, its properties are modifiedquadratic B-spline function.
====voltage_integral({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2)spline3====
''ExampleSYNTAX: voltage_integralspline3("FI_1",0,0,-10,0,0,10{{ArgTypeReal}} x)''
DescriptionEXAMPLE: Creates a voltage integral observable in [[EM.Ferma]]. If the observable 'label' already exists, its properties are modifiedspline3(1.0)''
====current_integral({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2)====DESCRIPTION: Computes and returns the cubic B-spline function.
''Example: current_integral("FI_1",-10,-10,0,10,10,0)''====sqr_wave====
DescriptionSYNTAX: Creates a current integral observable in [[EM.Ferma]]. If the observable 'label' already exists, its properties are modified.sqr_wave({{ArgTypeReal}} x)
====conduction_current_integralEXAMPLE: ''sqr_wave({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z20.5)====''
''ExampleDESCRIPTION: conduction_current_integral("FI_1"Computes and returns the periodic square wave function of period T = 2,oscillating between two values +1 and -10,-10,0,10,10,1 and having a value of +1 at x = 0)''.
Description: Creates a conduction current integral observable in [[EM.Ferma]]. If the observable 'label' already exists, its properties are modified.====sqr2====
====capacitanceSYNTAX: sqr2({{ArgTypeStringArgTypeReal}} labelx, {{ArgTypeAnyArgTypeReal}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2, {{ArgTypeAny}} x3, {{ArgTypeAny}} y3, {{ArgTypeAny}} z3, {{ArgTypeAny}} x4, {{ArgTypeAny}} y4, {{ArgTypeAny}} z4y)====
EXAMPLE: ''Example: capacitancesqr2("FI_1",-10,-10,5,10,10,10,0,0,-10,0,0,101)''
DescriptionDESCRIPTION: Creates a capacitance integral observable in [[EM.Ferma]]. If Computes and returns the observable 'label' already exists, its properties are modifiedsum of squares of x and y: x**2 + y**2.
====inductance({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2, {{ArgTypeAny}} x3, {{ArgTypeAny}} y3, {{ArgTypeAny}} z3, {{ArgTypeAny}} x4, {{ArgTypeAny}} y4, {{ArgTypeAny}} z4)sqr3====
''ExampleSYNTAX: inductancesqr2("FI_1"{{ArgTypeReal}} x,0{{ArgTypeReal}} y,0,-10,10,0,10,2.5,-2.5,0,7.5,2.5,0{{ArgTypeReal}} z)''
DescriptionEXAMPLE: Creates a inductance integral observable in [[EM.Ferma]]. If the observable 'label' already existssqr2(0, its properties are modified.1,2)''
====resistance({{ArgTypeString}} labelDESCRIPTION: Computes and returns the sum of squares of x, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2, {{ArgTypeAny}} x3, {{ArgTypeAny}} y3, {{ArgTypeAny}} z3, {{ArgTypeAny}} x4, {{ArgTypeAny}} y4, {{ArgTypeAny}} z4)====y and z: x**2 + y**2 + z**2.
''Example: resistance("FI_1",0,0,-10,0,0,10,-10,-10,0,10,10,0)''====sqrt2====
DescriptionSYNTAX: Creates a resistance integral observable in [[EM.Ferma]]. If the observable 'label' already existssqrt2({{ArgTypeReal}} x, its properties are modified.{{ArgTypeReal}} y)
====flux_electricEXAMPLE: ''sqrt2({{ArgTypeString}} label0, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z21)====''
''ExampleDESCRIPTION: flux_electricComputes and returns the radius of the 2D point ("FI_1"x,-10,-10,5,10,10,10y): sqrt(x**2 + y**2)''.
Description: Creates an electric flux integral observable in [[EM.Ferma]]. If the observable 'label' already exists, its properties are modified.====sqrt3====
====flux_magneticSYNTAX: sqrt3({{ArgTypeStringArgTypeReal}} labelx, {{ArgTypeAnyArgTypeReal}} x1y, {{ArgTypeAnyArgTypeReal}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2z)====
EXAMPLE: ''Example: flux_magneticsqrt3("FI_1",0,0,-10,10,01,102)''
DescriptionDESCRIPTION: Creates a magnetic flux integral observable in [[EM.Ferma]]. If Computes and returns the observable 'label' already existsradius of the 3D point (x, its properties are modifiedy,z): sqrt(x**2 + y**2 + z**2).
====energy_electric({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2)step====
''ExampleSYNTAX: energy_electricstep("FI_1",-10,-10,-10,10,10,10{{ArgTypeReal}} x)''
DescriptionEXAMPLE: Creates an electric energy integral observable in [[EM.Ferma]]. If the observable 'label' already exists, its properties are modifiedstep(1.0)''
====energy_magnetic({{ArgTypeString}} labelDESCRIPTION: Computes and returns the unit step function: 1 if x>0, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2)====0 if x<0.
''Example: energy_magnetic("FI_1",-10,-10,-10,10,10,10)''====strip_sweep====
DescriptionSYNTAX: Creates a magnetic energy integral observable in [[EM.Ferma]]. If the observable 'label' already existsstrip_sweep({{ArgTypeString}} object, its properties are modified.{{ArgTypeAny}} width)
====ohmic_lossEXAMPLE: ''strip_sweep({{ArgTypeString}} label"Curve_1", {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z25)====''
''ExampleDESCRIPTION: ohmic_loss("FI_1",-10,-10,-10,10,10,10)''Creates a strip version of a given curve object.
Description: Creates an ohmic loss integral observable in [[EM.Ferma]]. If the observable 'label' already exists, its properties are modified.====subtract====
====solution_planeSYNTAX: subtract({{ArgTypeString}} label, {{ArgTypeAnyArgTypeString}} field_sensor_labelobject_1, {{ArgTypeAnyArgTypeString}} is_quasiobject_2)====
EXAMPLE: ''Example: solution_planesubtract("FI_1Subtract_Object","FS_1Rect_Strip1",1"Rect_Strip2")''
DescriptionDESCRIPTION: Creates a 2D solution plane observable in [[EMBoolean object named 'label' by subtracting object_2 from object_1.Ferma]]. If the observable An error will be thrown if a Boolean object named 'label' already exists, its properties are modified.
== EM.Cube's Python Functions for Simulation-Related Functions & Operations ==superquad====
====select_moduleSYNTAX: superquad({{ArgTypeString}} module_namelabel, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} diam_x, {{ArgTypeAny}} diam_y, {{ArgTypeAny}} order)====
EXAMPLE: ''Example: select_modulesuperquad("[[EM.Tempo]]SuperQuad_1",0,0,0,50,20,4)''
DescriptionDESCRIPTION: Selects and sets [[EM.Cube]]Draws a super-quadratic curve object in the project workspace under the currently activated material group node, or modifies the super-quadratic curve named 's active modulelabel' if it already exists. If order = 2, the curve reduces to an ellipse. Higher order makes the round edges sharper. An infinite order reduces the curve to a rectangle.
====set_units({{ArgTypeString}} units)taper_strip====
''ExampleSYNTAX: set_unitstaper_strip("meter"{{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} base_width, {{ArgTypeAny}} top_width, {{ArgTypeAny}} length, {{ArgTypeAny}} is_expo)''
DescriptionEXAMPLE: Sets [[EM.Cube]]'s project length units.'taper_strip("ts_1",0,0,0,50,100,80,1)''
====set_frequency({{ArgTypeAny}} value)====DESCRIPTION: Draws a taper strip object in the project workspace under the currently activated material group node, or modifies the taper strip object named 'label' if it already exists. If the Boolean parameters "is_expo" is 1, an exponential taper will be drawn.
''Example: set_frequency(2.4e9)''====terrain_group====
DescriptionSYNTAX: Sets [[EM.Cube]]'s center frequency.terrain_group({{ArgTypeString}} label, {{ArgTypeAny}} eps, {{ArgTypeAny}} sigma)
====set_bandwidthEXAMPLE: ''terrain_group({{ArgTypeAny}} value"Terrain_1",5.0,0.0001)====''
''ExampleDESCRIPTION: set_bandwidth(1e9)Creates an terrain surface group in [[EM.Terrano]]. If the terrain surface group 'label'already exists, the group is activated.
Description: Sets [[EM.Cube]]'s frequency bandwidth.====thinwire_group====
====background_layerSYNTAX: thinwire_group({{ArgTypeString}} label, {{ArgTypeAny}} eps, {{ArgTypeAny}} sigma, {{ArgTypeAny}} mu, {{ArgTypeAny}} thicknessradius)====
EXAMPLE: ''Example: background_layerthinwire_group("Mid_LayerThinwire_1",3.3,0.001,1,1.54)''
DescriptionDESCRIPTION: Adds Creates a new substrate layer to [[EMThinwire material group in the current module.Picasso]] If the thin wire group 's background layer stackuplabel' already exists, the group is activated.
====delete_background({{ArgTypeString}} label)torus====
''ExampleSYNTAX: select_moduletorus("Mid_Layer"{{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius_major, {{ArgTypeAny}} radius_minor[, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle])''
DescriptionEXAMPLE: Deletes a finite-thickness substrate layer from [[EM.Picasso]]'s background layer stackup.'torus("Torus_1",0,0,0,50,20)''
====set_stackup_order("THS", {{ArgTypeString}} label_1, {{ArgTypeString}} label_2DESCRIPTION: Draws an torus object in the project workspace under the currently activated material group node, or modifies the torus named 'label' if it already exists.The arguments start_angle and end_angle are in degrees and specify a sweep about the torus's azimuth axis.., {{ArgTypeString}} label_n, "BHS")====
''Example: background_layer("THS","Top_Layer","Mid_Layer","Bottom_Layer","BHS")''====translate_by====
DescriptionSYNTAX: Sets the hierarchy of [[EM.Picasso]]'s background layer stackup from top to bottom. The sequence should always start with "THS" standing for the top half-space and must end in "BHS" standing for the bottom half-space. All the intermediate finite-thickness substrate layers must be included and listed in the right order. translate_by({{ArgTypeString}} object, {{ArgTypeReal}} x_dist, {{ArgTypeReal}} y_dist, {{ArgTypeReal}} z_dist)
====global_groundEXAMPLE: ''translate_by({{ArgTypeAny}} ground_on"MyObj", {{ArgTypeAny}} eps10, {{ArgTypeAny}} sigma10,x)====''
''ExampleDESCRIPTION: global_ground(1,3Translates an object by the specified distances in each direction.3,0.001)''
Description: Set the state of [[EM.Terrano]]'s global ground and its material properties. A zero value for ground_on means to no global ground assumed at Z = 0. ===translate_to====
====deleteSYNTAX: translate_to({{ArgTypeString}} node_nameobject, {{ArgTypeReal}} x_dest, {{ArgTypeReal}} y_dest, {{ArgTypeReal}} z_dest)====
EXAMPLE: ''Example: deletetranslate_to("Box_1MyObj",20,20,x2)''
DescriptionDESCRIPTION: Deletes a node name from Translates an object to the navigation tree. The node can be any geometric object, source, observable or material groupspecified destination.
====zoom_extents()transmitter_set====
DescriptionSYNTAX: Zooms to fit the extents of the physical structure into the screen.transmitter_set({{ArgTypeString}} label, {{ArgTypeAny}} base_point_set[, {{ArgTypeAny}} pattern_file, {{ArgTypeAny}} rot_x, {{ArgTypeAny}} rot_y, {{ArgTypeAny}} rot_z)
====add_variableEXAMPLE: ''transmitter_set({{ArgTypeString}} var_name"TX_1", {{ArgTypeAny}} value"PT_1","DPL_STD.RAD",0,90,0)====''
DESCRIPTION: Creates a transmitter set in [[EM.Terrano]]. If the transmitter set 'label'Example: add_variable("MyVar"already exists,1)''its properties are modified.
Description: Adds a new variable to [[EM.Cube]]'s variable list.====tri====
====run_analysisSYNTAX: tri({{ArgTypeReal}} x)====
DescriptionEXAMPLE: Runs a simulation''tri(0.1)''
====set_periodic({{ArgTypeAny}} is_periodicDESCRIPTION: Computes and returns the triangular window function: 1-|x| if x<1, {{ArgTypeAny}} spacingX, {{ArgTypeAny}} spacingY) ====0 elsewhere.
''Example: set_periodic(1,50,50)''====tri_wave====
DescriptionSYNTAX: Designates the physical structure as periodic and sets the periods along the X and Y directions.tri_wave({{ArgTypeReal}} x)
====plot_fileEXAMPLE: ''tri_wave({{ArgTypeString}} filename0.5) ====''
''ExampleDESCRIPTION: plot_file("D0Computes and returns the periodic triangular wave function of period T = 2, oscillating between two values +1 and -1 and having a value of +1 at x = 0.DAT)''
Description: Plot the contents of a specified data file in EM.Grid.====triangle_strip====
====meshSYNTAX: triangle_strip({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} side1, {{ArgTypeAny}} side2, {{ArgTypeAny}} angle)====
DescriptionEXAMPLE: Generates and displays the mesh of the physical structure.''triangle_strip("ts_1",0,0,0,50,100,90)''
====emtempo_mesh_settings({{ArgTypeAny}} cells_per_lambdaDESCRIPTION: Draws a triangle strip object in the project workspace under the currently activated material group node, {{ArgTypeAny}} ratio_contour, {{ArgTypeAny}} ratio_thin, {{ArgTypeAny}} ratio_abs)====or modifies the triangle strip object named 'label' if it already exists.
''Example: emtempo_mesh_settings(30,0.1,0.1,0.02)''====union====
DescriptionSYNTAX: Sets the parameters of [[EM.Tempo]]'s adaptive mesh generator.union({{ArgTypeString}} label, {{ArgTypeString}} object_1, {{ArgTypeString}} object_2)
====emillumina_mesh_settingsEXAMPLE: ''union({{ArgTypeAny}} cells_per_lambda"Union_Object","Rect_Strip1","Rect_Strip2")====''
DESCRIPTION: Creates a Boolean object named 'label'Example: emillumina_mesh_settings(30)by unioning object_1 and object_2. An error will be thrown if a Boolean object named 'label'already exists.
Description: Sets the parameters of [[EM.Illumina]]'s mesh generator.====virtual_group====
====empicasso_mesh_settingsSYNTAX: virtual_group({{ArgTypeAnyArgTypeString}} cells_per_lambdalabel)====
EXAMPLE: ''Example: empicasso_mesh_settingsvirtual_group(30"VIR_1")''
DescriptionDESCRIPTION: Sets the parameters of Creates a virtual object group in [[EM.PicassoTerrano]]. If the virtual group 's planar hybrid mesh generatorlabel' already exists, the group is activated.
====emlibera_mesh_settings({{ArgTypeAny}} cells_per_lambda)voltage_integral====
''ExampleSYNTAX: emlibera_mesh_settingsvoltage_integral(30{{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2)''
DescriptionEXAMPLE: Sets the parameters of [[EM.Libera]]'s mesh generator.'voltage_integral("FI_1",0,0,-10,0,0,10)''
====emferma_mesh_settings({{ArgTypeAny}} cell_size_xDESCRIPTION: Creates a voltage integral observable in [[EM.Ferma]]. If the observable 'label' already exists, {{ArgTypeAny}} cell_size_y, {{ArgTypeAny}} cell_size_z)====its properties are modified.
''Example: emferma_mesh_settings(0.5,0.5,0.5)''====volume_current_group====
DescriptionSYNTAX: Sets the parameters of [[EM.Ferma]]'s fixed-cell mesh generator.volume_current_group({{ArgTypeString}} label, {{ArgTypeAny}} Jx, {{ArgTypeAny}} Jy, {{ArgTypeAny}} Jz)
====emterrano_mesh_settingsEXAMPLE: ''volume_current_group({{ArgTypeAny}} edge_length"Magnet_1", {{ArgTypeAny}} angle_tol0,0,1e6)====''
DESCRIPTION: Creates a volume current source group in [[EM.Ferma]]. If the volume current group 'label'Example: emterrano_mesh_settings(5already exists,10)''the group is activated.
Description: Sets the parameters of [[EM.Terrano]]'s facet mesh generator.====wave_port====
====cubecad_mesh_settingsSYNTAX: wave_port({{ArgTypeString}} label, {{ArgTypeAny}} rect_object, {{ArgTypeAny}} offset, {{ArgTypeAny}} is_negative[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} edge_lengthphase, {{ArgTypeAny}} angle_tolresistance])====
EXAMPLE: ''Example: cubecad_mesh_settingswave_port(5"WP_1","Rect_1",0,100)''
DescriptionDESCRIPTION: Sets Creates a scattering wave port source in [[EM.Picasso]] or [[EM.Libera]]. If the parameters of CubeCADwave port 's mesh generatorlabel' already exists, its properties are modified.
====emtempo_engine_settings({{ArgTypeString}} engine, {{ArgTypeAny}} power_threshhold, {{ArgTypeAny}} max_timesteps)waveguide_design====
''ExampleSYNTAX: emtempo_engine_settingswaveguide_design("single-precision"{{ArgTypeReal}} er,-50,20000{{ArgTypeReal}} freq_hertz)''
DescriptionEXAMPLE: Sets the parameters of [[EM.Tempo]]'s FDTD simulation engine'waveguide_design(1.0,2e9)''
====emterrano_engine_settingsDESCRIPTION: Computes and returns the minimum larger dimension ({{ArgTypeAny}} bounce_count, {{ArgTypeAny}} do_edge_diffraction, {{ArgTypeAny}} angular_resolution, {{ArgTypeAny}} ray_threshholdin meters)====of the cross section of a hollow rectangular waveguide above cutoff with a material filling of relative permittivity er at an operating frequency of freq_hertz.
''Example: emterrano_engine_settings(5,1,1,-100)''====waveguide_src====
DescriptionSYNTAX: Sets the parameters of waveguide_src({{ArgTypeString}} label, {{ArgTypeAny}} box_object, {{ArgTypeAny}} offset, {{ArgTypeAny}} is_negative[[EM.Terrano], {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance]'s SBR simulation engine.)
====empicasso_engine_settingsEXAMPLE: ''waveguide_src({{ArgTypeString}} matrix_solver"WG_1", {{ArgTypeAny}} error_tol"Box_1", {{ArgTypeAny}} max_iterations50,0)====''
DESCRIPTION: Creates a waveguide port source in [[EM.Tempo]]. If the waveguide port 'label'Example: empicasso_engine_settings("bicg"already exists,1e-3,1000)''its properties are modified.
Description: Sets the parameters of [[EM.Picasso]]'s planar MoM simulation engine.====wire_current_group====
====emillumina_engine_settingsSYNTAX: wire_current_group({{ArgTypeString}} enginelabel, {{ArgTypeAny}} is_fixed_iterationcurrent, {{ArgTypeAny}} error_tol, {{ArgTypeAny}} max_iterationswire_radius)====
EXAMPLE: ''Example: emillumina_engine_settingswire_current_group("ipoMagnet_1",1,0,1e-2,20.5)''
DescriptionDESCRIPTION: Sets the parameters of Creates a wire current source group in [[EM.IlluminaFerma]]. If the wire current group 's Physical Optics simulation enginelabel' already exists, the group is activated.
====emferma_engine_settings({{ArgTypeString}} matrix_solver, {{ArgTypeAny}} error_tol, {{ArgTypeAny}} max_iterations)wire_gap_src====
''ExampleSYNTAX: emferma_engine_settingswire_gap_src("bicg-stab"{{ArgTypeString}} label,1e-3{{ArgTypeAny}} line_object,100{{ArgTypeAny}} offset, {{ArgTypeAny}} polarity[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance])''
DescriptionEXAMPLE: Sets the parameters of [[EM.Ferma]]'s electrostatic and magnetostatic simulation engines.'wire_gap_src("WIG_1","Line_1",50,0)''
====emlibera_engine_settings_wmom({{ArgTypeString}} matrix_solverDESCRIPTION: Creates a wire gap circuit source in [[EM.Libera]]. If the wire gap source 'label' already exists, {{ArgTypeAny}} error_tol, {{ArgTypeAny}} max_iterations)====its properties are modified.
''Example: emlibera_engine_settings_wmom("bicg",1e-3,1000)''====zoom_extents====
DescriptionSYNTAX: Sets the parameters of [[EM.Libera]]'s wire MoM simulation engines.zoom_extents()
====emlibera_engine_settings_smom({{ArgTypeString}} matrix_solver, {{ArgTypeAny}} error_tol, {{ArgTypeAny}} max_iterations, {{ArgTypeAny}} ncpus, {{ArgTypeString}} formulation, {{ArgTypeAny}} alpha)====DESCRIPTION: Zooms to fit the extents of the physical structure into the screen.
''Example: emlibera_engine_settings_smom("bicg",1e-3,1000,4,"efie",0.4)''<br />
Description: Sets the parameters of [[EM.Libera]]'s surface MoM simulation engines.<hr>
<p>&nbsp;</p>[[Image:Top_icon.png|48px30px]] '''[[#Standard Python Functions Standard_Python_Operators | Back to the Top of the Page]]'''
[[Image:Back_icon.png|40px30px]] '''[[EM.Cube | Back to EM.Cube Main Page]]'''
28,333
edits