Changes

Glossary of EM.Cube's Python Functions

17,444 bytes added, 22:22, 11 June 2018
<table><tr><td>[[image:Cube-icon.png | link=Getting_Started_with_EM.Cube]] [[image:cad-ico.png | link=Building_Geometrical_Constructions_in_CubeCAD]] [[image:fdtd-ico.png | link=EM.Tempo]] [[image:prop-ico.png | link=EM.Terrano]] [[image:static-ico.png | link=EM.Ferma]] [[image:planar-ico.png | link=EM.Picasso]] [[image:metal-ico.png | link=EM.Libera]] [[image:po-ico.png | link=EM.Illumina]]</td><tr></table>[[Image:Back_icon.png|30px]] '''[[EM.Cube | Back to EM.Cube Main Page]]'''<br /> == Standard Python Operators == {| class="wikitable"!scope="col"| Syntax!scope="col"| Type!scope="col"| Description|-| style="width:80px;" | -p| style="width:150px;" | Std. Python operator| style="width:270px;" | negative of p|-| style="width:80px;" | p=q| style="width:150px;" | Std. Python operator| style="width:270px;" | p is equal to q|-| style="width:80px;" | p+q| style="width:150px;" | Std. Python operator| style="width:270px;" | sum of p and q|-| style="width:80px;" | p-q| style="width:150px;" | Std. Python operator| style="width:270px;" | difference p and q|-| style="width:80px;" | p*q| style="width:150px;" | Std. Python operator| style="width:270px;" | product of p and q|-| style="width:80px;" | p/q| style="width:150px;" | Std. Python operator| style="width:270px;" | quotient of p over q|-| style="width:80px;" | p**q| style="width:150px;" | Std. Python operator| style="width:270px;" | p to the power of q|-| style="width:80px;" | p%q| style="width:150px;" | Std. Python operator| style="width:270px;" | p modulus q|-| style="width:80px;" | p==q| style="width:150px;" | Std. Python operator| style="width:270px;" | p logically equal to q|-| style="width:80px;" | p>q| style="width:150px;" | Std. Python operator| style="width:270px;" | p is greater than q|-| style="width:80px;" | p>=q| style="width:150px;" | Std. Python operator| style="width:270px;" | p is greater than or equal to q|-| style="width:80px;" | p<q| style="width:150px;" | Std. Python operator| style="width:270px;" | p is less than q|-| style="width:80px;" | p<=q| style="width:150px;" | Std. Python operator| style="width:270px;" | p is less than or equal to q|-| style="width:80px;" | !p| style="width:150px;" | Std. Python operator| style="width:270px;" | Logical not p|-| style="width:80px;" | p and q| style="width:150px;" | Std. Python operator| style="width:270px;" | p Boolean and q|-| style="width:80px;" | p or q| style="width:150px;" | Std. Python operator| style="width:270px;" | p Boolean or q|-|} == Basic Mathematical Python Functions ==
{| class="wikitable"
| style="width:270px;" | Absolute value function
| style="width:270px;" | x if x>0, -x if x<0
|-
| ceiling(x)
| Std. Python function
| Ceiling function
| Nearest integer >= x
|-
| floor(x)
| Std. Python function
| Floor function
| Nearest integer <= x
|-
| pow(x,y)
| Std. Python function
| Factorial
| For for integer values of x: n! = n(n-1)(n-2)...3.2.1
|-
| max(x,y)
| -
|-
| asinhnp.arcsinh(x)
| Std. Python function
| Inverse hyperbolic sine function
| -
|-
| acoshnp.arccosh(x)
| Std. Python function
| Inverse hyperbolic cosine function
| -
|-
| atanhnp.arctanh(x)
| Std. Python function
| Inverse hyperbolic tangent function
| -
|-
| np.floor(x)
| Std. Python function
| Floor function
| nearest integer <= x
|}
| style="width:150px;" | Std. Python function
| style="width:270px;" | Sine and cosine integral functions
| style="width:270px;" | See see [https://en.wikipedia.org/wiki/Trigonometric_integral Trigonometric Integrals on Wikipedia.]
|-
| sp.fresnel(x)
| Std. Python function
| Sine and cosine Fresnel integral functions
| See see [https://en.wikipedia.org/wiki/Fresnel_integral Fresnel Integrals on Wikipedia.]
|-
| sp.ellipe(x)
| Std. Python function
| Elliptic function of the first kind
| See see [https://en.wikipedia.org/wiki/Elliptic_integral Elliptic Integrals on Wikipedia.]
|-
| sp.ellipk(x)
| Std. Python function
| Elliptic function of the second kind
| See see [https://en.wikipedia.org/wiki/Elliptic_integral Elliptic Integrals on Wikipedia.]
|-
| sp.expi(x)
| Std. Python function
| Exponential integral function
| See see [https://en.wikipedia.org/wiki/Exponential_integral Exponential Integrals on Wikipedia.]
|-
| sp.expn(n,x)
| Std. Python function
| Generalized exponential integral function of order n
| See see [https://en.wikipedia.org/wiki/Exponential_integral Exponential Integrals on Wikipedia.]
|-
| sp.erf(x)
| Std. Python function
| Error function
| See see [https://en.wikipedia.org/wiki/Error_function Error Function on Wikipedia.]
|-
| sp.erfc(x)
| Std. Python function
| Complementary error function
| See see [https://en.wikipedia.org/wiki/Error_function Error Function on Wikipedia.]
|-
| sp.gamma(x)
| Std. Python function
| Gamma function
| See see [https://en.wikipedia.org/wiki/Gamma_function Gamma Function on Wikipedia.]
|-
| sp.airy(x)
| Std. Python function
| Airy function of the first (Ai) and second (Bi) kind and their derivatives
| See see [https://en.wikipedia.org/wiki/Airy_function Airy Functions on Wikipedia.]
|-
| sp.j0(x)
| Std. Python function
| Bessel function of the first kind and order 0
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.j1(x)
| Std. Python function
| Bessel function of the first kind and order 1
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.jv(n,x)
| Std. Python function
| Bessel function of the first kind and order n
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.y0(x)
| Std. Python function
| Bessel function of the second kind and order 0
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.y1(x)
| Std. Python function
| Bessel function of the second kind and order 1
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.yv(n,x)
| Std. Python function
| Bessel function of the second kind and order n
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.i0(x)
| Std. Python function
| Modified Bessel function of the first kind and order 0
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.i1(x)
| Std. Python function
| Modified Bessel function of the first kind and order 1
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.iv(n,x)
| Std. Python function
| Modified Bessel function of the first kind and order n
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.k0(x)
| Std. Python function
| Modified Bessel function of the second kind and order 0
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.k1(x)
| Std. Python function
| Modified Bessel function of the second kind and order 1
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.kv(n,x)
| Std. Python function
| Modified Bessel function of the second kind and order n
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.sph_jn(n,x)
| Std. Python function
| Spherical Bessel function of the first kind and order n
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.sph_yn(n,x)
| Std. Python function
| Spherical Bessel function of the second kind and order n
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.sph_in(n,x)
| Std. Python function
| Modified spherical Bessel function of the first kind and order n
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.sph_kn(n,x)
| Std. Python function
| Modified spherical Bessel function of the second kind and order n
| See see [https://en.wikipedia.org/wiki/Bessel_function Bessel Functions on Wikipedia.]
|-
| sp.lpn(n,x)
| Std. Python function
| Legendre function of the first kind and order n
| See see [https://en.wikipedia.org/wiki/Legendre_polynomial Legendre Polynomials on Wikipedia.]
|-
| sp.lqn(n,x)
| Std. Python function
| Legendre function of the second kind and order n
| See see [https://en.wikipedia.org/wiki/Legendre_polynomials Legendre Polynomials on Wikipedia.]
|-
| sp.lpmn(m,n,x)
| Std. Python function
| Associated Legendre function of the first kind and order n
| See see [https://en.wikipedia.org/wiki/Legendre_polynomial Legendre Polynomials on Wikipedia.]
|-
| sp.lqmn(m,n,x)
| Std. Python function
| Associated Legendre function of the second kind and order n
| See see [https://en.wikipedia.org/wiki/Legendre_polynomials Legendre Polynomials on Wikipedia.]
|-
| sp.eval_chebyt(n,x)
| Std. Python function
| Chebyshev polynomial of the first kind and order n
| See see [https://en.wikipedia.org/wiki/Chebyshev_polynomials Chebyshev Polynomials on Wikipedia.]
|-
| sp.eval_chebyu(n,x)
| Std. Python function
| Chebyshev polynomial of the second kind and order n
| See see [https://en.wikipedia.org/wiki/Chebyshev_polynomials Chebyshev Polynomials on Wikipedia.]
|-
| sp.eval_legendre(n,x)
| Std. Python function
| Legendre polynomial of order n
| See see [https://en.wikipedia.org/wiki/Legendre_polynomials Legendre Polynomials on Wikipedia.]
|-
| sp.eval_laguerre(n,x)
| Std. Python function
| Laguerre polynomial of order n
| See see [https://en.wikipedia.org/wiki/Laguerre_polynomials Laguerre Polynomials on Wikipedia.]
|-
| sp.eval_hermite(n,x)
| Std. Python function
| Hermite polynomial of order n
| See see [https://en.wikipedia.org/wiki/Hermite_polynomials Hermite Polynomials on Wikipedia.]
|-
| Math_cesp.mathieu_cem(n,rq,x)
| Std. Python function
| Even periodic (cosine) Mathieu function of order nand its derivative| See see [https://en.wikipedia.org/wiki/Mathieu_function Mathieu Functions on Wikipedia.]
|-
| Math_sesp.mathieu_sem(n,rq,x)
| Std. Python function
| Odd periodic (sine) Mathieu function of order nand its derivative| See see [https://en.wikipedia.org/wiki/Mathieu_function Mathieu Functions on Wikipedia.]
|}
== EM.Cube's Miscellaneous Native Python Functions ==
{| class="wikitable"!scope="col"| Syntax!scope="col"| Type!scope="col"| Description!scopeactivate="col"| Notes|-| style="width:80px;" | rect(x)| style="width:150px;" | EMAG Python function| style="width:270px;" | Rectangle function| style="width:270px;" | 1 if |x|&le;0.5, 0 elsewhere |-| tri(x)| EMAG Python function| Triangle function| 1 if |1-x|&le;1, 0 elsewhere |-| spline2(x)| EMAG Python function| Quadratic spline function| -|-| spline3(x)| EMAG Python function| Cubic spline function| -|-| step(x)| EMAG Python function| Step function| 1 if x>0, 0 if x<0|-| sgn(x)| Std. Python function| Sign function| 1 if x>0, -1 if x<0|-| ramp(x)| EMAG Python function| Ramp function| x if x>0, 0 if x<0|-| sqr_wave(x)| EMAG Python function| Square wave function| -|-| tri_wave(x)| EMAG Python function| Triangle wave function| -|-| sawtooth(x)| EMAG Python function| Sawtooth wave function| -|-| sinc(x)| EMAG Python function| Sinc function| sin(pi*x)/(pi*x)|-| gauss(x,mu,sigma)| EMAG Python function| Gaussian function of mean mu and standard deviation sigma| exp(-0.5*((x-mu)/sigma)**2)/sigma/sqrt(2*pi)|-| msin(x,r)| EMAG Python function| super-quadratic sine function of order r| -|-| mcos(x,r)| EMAG Python function| super-quadratic cosine function of order r| -|-| sigmoid(x,a)| EMAG Python function| Sigmoid function of slope a| 2/(1 + exp(-a*x)) - 1|-| bh_window(x,T)| EMAG Python function| Blackman-Harris window function| -|-| bh_step(x,T)| EMAG Python function| Blackman-Harris step function| -|-| rand(x,y)| EMAG Python function| Random function| -|-| rosen(x,y,a,b)| EMAG Python function| Rosenbrock function| (a-x)**2 + b*(y-x**2)**2|-| mean(x,y)| EMAG Python function| arithmetic mean of x and y| 0.5*(x+y)|-| geo(x,y)| EMAG Python function| geometric mean of x and y| sqrt(x*y)|-| harm(x,y)| EMAG Python function| harmonic mean of x and y| 2/(1/x+1/y)|-| sqr2(x,y)| EMAG Python function| sum of squares of x and y| x**2 + y**2|-| sqr3(x,y,z)| EMAG Python function| sum of squares of x and y and z| x**2 + y**2 + z**3|-| sqrt2(x,y)| EMAG Python function| radius of 2D point (x,y)| sqrt(x**2 + y**2)|-| sqrt3(x,y,z)| EMAG Python function| radius of 3D point (x,y,z)| sqrt(x**2 + y**2 + z**3)|}
== EM.Cube's Design Python Functions ==SYNTAX: activate({{ArgTypeString}} group_node_label)
{| class=EXAMPLE: ''activate("wikitableColor_1")'' DESCRIPTION: Activates a color, material or object group in the current active [[EM.Cube]] module for insertion of new objects.  !scope====add_variable==== SYNTAX: add_variable({{ArgTypeString}} var_name, {{ArgTypeAny}} value) EXAMPLE: ''add_variable("colMyVar"| Syntax,1)'' DESCRIPTION: Adds a new variable to [[EM.Cube]]'s variable list. !scope====array==== SYNTAX: array({{ArgTypeString}} label, {{ArgTypeString}} object, {{ArgTypeAny}} x_count, {{ArgTypeAny}} y_count, {{ArgTypeAny}} z_count, {{ArgTypeAny}} x_spacing, {{ArgTypeAny}} y_spacing, {{ArgTypeAny}} z_spacing) EXAMPLE: ''array("colArray_1"| Type,"Rect_Strip_1",4,4,1,50,50,0)'' DESCRIPTION: Creates or modifies an array object. !scope====array_custom==== SYNTAX: array_custom({{ArgTypeString}} label, {{ArgTypeString}} object, {{ArgTypeAny}} x_count, {{ArgTypeAny}} y_count, {{ArgTypeAny}} z_count, {{ArgTypeAny}} x_spacing, {{ArgTypeAny}} y_spacing, {{ArgTypeAny}} z_spacing, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} rot_x, {{ArgTypeAny}} rot_y, {{ArgTypeAny}} rot_z) EXAMPLE: ''array_custom("colArray_1"| Description,"Rect_Strip_1",4,4,1,50,50,0,100,100,20,0,0,45)'' DESCRIPTION: Creates or modifies an array object and sets its local coordinate system and rotation angles. !scope====background_layer==== SYNTAX: background_layer({{ArgTypeString}} label, {{ArgTypeAny}} eps, {{ArgTypeAny}} sigma, {{ArgTypeAny}} mu, {{ArgTypeAny}} thickness) EXAMPLE: ''background_layer("colMid_Layer"| Notes,3.3,0.001,1,1.5)'' DESCRIPTION: Adds a new substrate layer to [[EM.Picasso]]'s background layer stackup.|-| style="width===base_point_group==== SYNTAX:100px;base_point_group({{ArgTypeString}} label) EXAMPLE: ''base_point_set(" | microstrip_designBP_Set_1")'' DESCRIPTION: Creates a base point set in [[EM.Terrano]]. If the base point set group 'label' already exists, the group is activated. ====bh_step==== SYNTAX: bh_step(z0{{ArgTypeReal}} x,er{{ArgTypeReal}} T)| styleEXAMPLE: ''bh_step(0.5,1)'' DESCRIPTION: Computes and returns the Blackman-Harris step function. ="width===bh_window==== SYNTAX:150px;" | EMAG Python bh_window({{ArgTypeReal}} x, {{ArgTypeReal}} T) EXAMPLE: ''bh_window(0.5,1)'' DESCRIPTION: Computes and returns the Blackman-Harris window function. | style="width===box==== SYNTAX:250px;box({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} base_x, {{ArgTypeAny}} base_y, {{ArgTypeAny}} height[, {{ArgTypeAny}} cap_top, {{ArgTypeAny}} cap_bottom]) EXAMPLE: ''box(" | Returns Box_1",0,0,0,50,50,100)'' DESCRIPTION: Draws a box object in the widthproject workspace under the currently activated material group node, or modifies the box named 'label' if it already exists. ====capacitance==== SYNTAX: capacitance({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2, {{ArgTypeAny}} x3, {{ArgTypeAny}} y3, {{ArgTypeAny}} z3, {{ArgTypeAny}} x4, {{ArgTypeAny}} y4, {{ArgTypeAny}} z4) EXAMPLE: ''capacitance("FI_1",-to10,-height ratio of 10,5,10,10,10,0,0,-10,0,0,10)'' DESCRIPTION: Creates a microstrip transmission line capacitance integral observable in [[EM.Ferma]]. If the observable 'label' already exists, its properties are modified. | style="width===capacitor==== SYNTAX:250px;capacitor({{ArgTypeString}} label, {{ArgTypeAny}} line_object, {{ArgTypeAny}} offset, {{ArgTypeAny}} capacitance_pF) EXAMPLE: ''capacitor(" | z0Cap_1","Line_1",25,10)'' DESCRIPTION: characteristic impedance Creates a capacitor in Ohms[[EM.Tempo]]. If the capacitor 'label' already exists, erits properties are modified. ====charge_group==== SYNTAX: substrate permittivitycharge_group({{ArgTypeString}} label, {{ArgTypeAny}} density)|EXAMPLE: ''charge_group("Charge_1",-1e-5)'' DESCRIPTION: Creates a volume charge source group in [[EM.Ferma]]. If the charge group 'label' already exists, the group is activated. | style="width===circ_strip==== SYNTAX:100px;" | microstrip_z0circ_strip(w{{ArgTypeString}} label,h{{ArgTypeAny}} x0,er{{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} inner_radius, {{ArgTypeAny}} outer_radius[, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle])| style=EXAMPLE: ''circ_strip("widthcs_1",0,0,0,50,0)'' DESCRIPTION:150px;Draws a circle strip object in the project workspace under the currently activated material group node, or modifies the circle strip object named 'label' if it already exists. The arguments start_angle and end_angle are in degrees and specify a sweep about the circle strip's azimuth axis. ====circle==== SYNTAX: circle({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle) EXAMPLE: ''circle(" | EMAG Python functionpyramid_1",0,0,0,10,10,100)'' DESCRIPTION: Draws a circular curve object in the project workspace under the currently activated material group node, or modifies the circle named 'label' if it already exists. The parameters start_angle and end_angle are in degrees. | style====clone==== SYNTAX: clone({{ArgTypeString}} label, {{ArgTypeString}} object, {{ArgTypeReal}} x0, {{ArgTypeReal}} y0, {{ArgTypeReal}} z0) EXAMPLE: ''clone("widthNewObj","MyObj",10,10,0)'' DESCRIPTION:250px;Creates a copy of the specified object and repositions it at the given coordinates.  ====close_curve==== SYNTAX: close_curve({{ArgTypeString}} label, {{ArgTypeString}} close_state) EXAMPLE: ''close_curve(" | Returns Curve_1",1)'' DESCRIPTION: Sets the characteristic impedance open/close state of a microstrip polyline or NURBS curve. Use 0 for open curve and 1 for close curve. ====coaxial_design==== SYNTAX: coaxial_design({{ArgTypeReal}} z0, {{ArgTypeReal}} er) EXAMPLE: ''coaxial_design(50,2.2)'' DESCRIPTION: Computes and returns the ratio of the radius of the outer conductor to the radius of the inner conductor of a coaxial transmission line of characteristic impedance z0 (in Ohms ) with core relative permittivity er. | style="width===coaxial_src==== SYNTAX:250px;coaxial_src({{ArgTypeString}} label, {{ArgTypeAny}} cylinder_object, {{ArgTypeAny}} outer_radius, {{ArgTypeAny}} edge[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance]) EXAMPLE: ''coaxial_src(" | wCOAX_1","Cyl_1",1.5,"+z")'' DESCRIPTION: microstrip widthCreates a coaxial port source in [[EM.Tempo]]. If the coaxial port 'label' already exists, hits properties are modified. ====color_group==== SYNTAX: substrate heightcolor_group({{ArgTypeString}} label) EXAMPLE: ''color_group("Color_1")'' DESCRIPTION: Creates a color group in CubeCAD module. If the color group 'label' already exists, erthe group is activated. ====conduction_current_integral==== SYNTAX: substrate permittivityconduction_current_integral({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2)|EXAMPLE: ''conduction_current_integral("FI_1",-10,-10,0,10,10,0)'' DESCRIPTION: Creates a conduction current integral observable in [[EM.Ferma]]. If the observable 'label' already exists, its properties are modified. | style="width===conductive_sheet_group==== SYNTAX:100px;" | microstrip_eps_effconductive_sheet_group(w{{ArgTypeString}} label,h{{ArgTypeAny}} sigma,er{{ArgTypeAny}} thickness)| style="widthEXAMPLE:150px;''conductive_sheet_group(" | EMAG Python functionCond_1",100, 0.01)'' DESCRIPTION: Creates a conductive sheet group in [[EM.Picasso]]. If the conductive sheet group 'label' already exists, the group is activated. | style="width===cone==== SYNTAX:250px;cone({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} base_radius, {{ArgTypeAny}} height[, {{ArgTypeAny}} top_radius, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle, {{ArgTypeAny}} cap_top, {{ArgTypeAny}} cap_bottom]) EXAMPLE: ''cone(" | Returns Cone_1",0,0,0,30,40,20,0,180)'' DESCRIPTION: Draws a cone object in the effective permittivity of project workspace under the currently activated material group node, or modifies the cone named 'label' if it already exists. The arguments start_angle and end_angle are in degrees and specify a microstrip transmission line sweep about the cone's azimuth axis. | style="width===consolidate==== SYNTAX:250px;consolidate({{ArgTypeString}} object) EXAMPLE: ''consolidate(" | wPoly_1")'' DESCRIPTION: microstrip widthConsolidates a specified object. ====cpw_design_s==== SYNTAX: cpw_design_s({{ArgTypeReal}} z0, {{ArgTypeReal}} w, {{ArgTypeReal}} h: substrate height, {{ArgTypeReal}} er) EXAMPLE: ''cpw_design_s(50,2,0.5,2.2)'' DESCRIPTION: Computes and returns the center strip width (in meters) of a CPW transmission line of characteristic impedance z0 with slot width w, substrate height h and substrate relative permittivityer.|-| style="width===cpw_design_w==== SYNTAX:100px;" | microstrip_lambda_gcpw_design_w(w{{ArgTypeReal}} z0,{{ArgTypeReal}} s, {{ArgTypeReal}} h,{{ArgTypeReal}} er) EXAMPLE: ''cpw_design_w(50,freq_hertz1,0.5,2.2)''| style="DESCRIPTION: Computes and returns the slot width(in meters) of a CPW transmission line of characteristic impedance z0 with center strip width s, substrate height h and substrate relative permittivity er. ====cpw_src==== SYNTAX:150px;cpw_src({{ArgTypeString}} label, {{ArgTypeAny}} rect_object, {{ArgTypeAny}} spacing, {{ArgTypeAny}} edge[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance]) EXAMPLE: ''cpw_src(" | EMAG Python functionCPW_1","Rect_1",1.5,"+x")'' DESCRIPTION: Creates a CPW port source in [[EM.Tempo]]. If the CPW port 'label' already exists, its properties are modified. | style="width===cubecad_mesh_settings==== SYNTAX:250px;" | Returns cubecad_mesh_settings({{ArgTypeAny}} edge_length, {{ArgTypeAny}} angle_tol) EXAMPLE: ''cubecad_mesh_settings(5,10)'' DESCRIPTION: Sets the guide wavelength parameters of CubeCAD's mesh generator. ====current_dist==== SYNTAX: current_dist({{ArgTypeString}} label) EXAMPLE: ''current_dist("CD_1")'' DESCRIPTION: Creates a microstrip transmission line current distribution observable. If the observable 'label' already exists, its properties are modified. ====current_integral==== SYNTAX: current_integral({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2) EXAMPLE: ''current_integral("FI_1",-10,-10,0,10,10,0)'' DESCRIPTION: Creates a current integral observable in meters[[EM.Ferma]]. If the observable 'label' already exists, its properties are modified. | style====cylinder==== SYNTAX: cylinder({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius, {{ArgTypeAny}} height[, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle, {{ArgTypeAny}} cap_top, {{ArgTypeAny}} cap_bottom]) EXAMPLE: ''cylinder("widthCylinder_1",0,0,0,10,100)'' DESCRIPTION:250px;Draws a cylinder object in the project workspace under the currently activated material group node, or modifies the cylinder named 'label' if it already exists. The arguments start_angle and end_angle are in degrees and specify a sweep about the cylinder's azimuth axis. ====delete==== SYNTAX: delete({{ArgTypeString}} node_name) EXAMPLE: ''delete(" | wBox_1")'' DESCRIPTION: microstrip widthDeletes a node name from the navigation tree. The node can be any geometric object, hsource, observable or material group.  ====delete_background_layer==== SYNTAX: delete_background_layer({{ArgTypeString}} label) EXAMPLE: ''delete_background_layer("Mid_Layer")'' DESCRIPTION: Deletes a finite-thickness substrate heightlayer from [[EM.Picasso]]'s background layer stackup. ====dielectric_group==== SYNTAX: dielectric_group({{ArgTypeString}} label, er{{ArgTypeAny}} eps, {{ArgTypeAny}} sigma, {{ArgTypeAny}} mu, {{ArgTypeAny}} rho) EXAMPLE: substrate permittivity''dielectric_group("Dielectric_1", freq_hertz"my_eps",0,1,0)'' DESCRIPTION: frequency Creates a dielectric material group in Hzthe current module with the specified material properties. If the dielectric group 'label' already exists, the group is activated.|-| style====diode==== SYNTAX: diode({{ArgTypeString}} label, {{ArgTypeAny}} line_object, {{ArgTypeAny}} polarity, {{ArgTypeAny}} is_fA, {{ArgTypeAny}} temperature_K, {{ArgTypeAny}} ideality_factor) EXAMPLE: ''diode("widthDiode_1","Line_1",25,0,10,300,1)'' DESCRIPTION:100px;Creates a diode in [[EM.Tempo]]. If the diode 'label' already exists, its properties are modified. ====distributed_src==== SYNTAX: distributed_src({{ArgTypeString}} label, {{ArgTypeAny}} rect_object, {{ArgTypeAny}} field_dir, {{ArgTypeAny}} profile[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance]) EXAMPLE: ''distributed_src(" | cpw_design_wDS_1","Rect_1","+y","uniform")'' DESCRIPTION: Creates a distributed source in [[EM.Tempo]]. If the distributed source 'label' already exists, its properties are modified. ====ellipse_strip==== SYNTAX: ellipse_strip({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0,{{ArgTypeAny}} radius_x, {{ArgTypeAny}} radius_y[, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle]) EXAMPLE: ''ellipse_strip("es_1",0,0,0,50,0)'' DESCRIPTION: Draws a ellipse strip object in the project workspace under the currently activated material group node, or modifies the ellipse strip object named 'label' if it already exists. The arguments start_angle and end_angle are in degrees and specify a sweep about the ellipse strip'sazimuth axis. ====ellipsoid==== SYNTAX: ellipsoid({{ArgTypeString}} label,h{{ArgTypeAny}} x0,er{{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius_x, {{ArgTypeAny}} radius_y, {{ArgTypeAny}} radius_z[, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle])| styleEXAMPLE: ''ellipsoid("Ellipsoid_1",0,0,0,100,100,50,0,360)'' DESCRIPTION: Draws an ellipsoid object in the project workspace under the currently activated material group node, or modifies the ellipsoid named 'label' if it already exists. The arguments start_angle and end_angle are in degrees and specify a sweep about the ellipsoid's azimuth axis. ====emferma_engine_settings==== SYNTAX: emferma_engine_settings({{ArgTypeString}} matrix_solver, {{ArgTypeAny}} error_tol, {{ArgTypeAny}} max_iterations) EXAMPLE: ''emferma_engine_settings("widthbicg-stab",1e-3,100)'' DESCRIPTION:150px;Sets the parameters of [[EM.Ferma]]'s electrostatic and magnetostatic simulation engines. ====emferma_mesh_settings==== SYNTAX: emferma_mesh_settings({{ArgTypeAny}} cell_size_x, {{ArgTypeAny}} cell_size_y, {{ArgTypeAny}} cell_size_z) EXAMPLE: ''emferma_mesh_settings(0.5,0.5,0.5)'' DESCRIPTION: Sets the parameters of [[EM.Ferma]]'s fixed-cell mesh generator. ====emillumina_engine_settings==== SYNTAX: emillumina_engine_settings({{ArgTypeString}} engine, {{ArgTypeAny}} is_fixed_iteration, {{ArgTypeAny}} error_tol, {{ArgTypeAny}} max_iterations) EXAMPLE: ''emillumina_engine_settings(" | EMAG Python functionipo",0,1e-2,20)'' DESCRIPTION: Sets the parameters of [[EM.Illumina]]'s Physical Optics simulation engine. | style====emillumina_mesh_settings==== SYNTAX: emillumina_mesh_settings({{ArgTypeAny}} cells_per_lambda) EXAMPLE: ''emillumina_mesh_settings(30)'' DESCRIPTION: Sets the parameters of [[EM.Illumina]]'s mesh generator. ====emlibera_engine_settings_smom==== SYNTAX: emlibera_engine_settings_smom({{ArgTypeString}} matrix_solver, {{ArgTypeAny}} error_tol, {{ArgTypeAny}} max_iterations, {{ArgTypeAny}} ncpus, {{ArgTypeString}} formulation, {{ArgTypeAny}} alpha) EXAMPLE: ''emlibera_engine_settings_smom("widthbicg",1e-3,1000,4,"efie",0.4)'' DESCRIPTION:250px;Sets the parameters of [[EM.Libera]]'s surface MoM simulation engines. ====emlibera_engine_settings_wmom==== SYNTAX: emlibera_engine_settings_wmom({{ArgTypeString}} matrix_solver, {{ArgTypeAny}} error_tol, {{ArgTypeAny}} max_iterations) EXAMPLE: ''emlibera_engine_settings_wmom(" | Returns bicg",1e-3,1000)'' DESCRIPTION: Sets the slot width parameters of a coplanar waveguide [[EM.Libera]]'s wire MoM simulation engines. ====emlibera_mesh_settings==== SYNTAX: emlibera_mesh_settings(CPW{{ArgTypeAny}} cells_per_lambda) transmission line | styleEXAMPLE: ''emlibera_mesh_settings(30)'' DESCRIPTION: Sets the parameters of [[EM.Libera]]'s mesh generator. ====empicasso_engine_settings==== SYNTAX: empicasso_engine_settings({{ArgTypeString}} matrix_solver, {{ArgTypeAny}} error_tol, {{ArgTypeAny}} max_iterations) EXAMPLE: ''empicasso_engine_settings("widthbicg",1e-3,1000)'' DESCRIPTION:250px;Sets the parameters of [[EM.Picasso]]'s planar MoM simulation engine. ====empicasso_mesh_settings==== SYNTAX: empicasso_mesh_settings({{ArgTypeAny}} cells_per_lambda) EXAMPLE: ''empicasso_mesh_settings(30)'' DESCRIPTION: Sets the parameters of [[EM.Picasso]]'s planar hybrid mesh generator. ====emtempo_engine_settings==== SYNTAX: emtempo_engine_settings({{ArgTypeString}} engine, {{ArgTypeAny}} power_threshhold, {{ArgTypeAny}} max_timesteps) EXAMPLE: ''emtempo_engine_settings(" | z0single-precision",-50,20000)'' DESCRIPTION: characteristic impedance in OhmsSets the parameters of [[EM.Tempo]]'s FDTD simulation engine. ====emtempo_mesh_settings==== SYNTAX: emtempo_mesh_settings({{ArgTypeAny}} cells_per_lambda, {{ArgTypeAny}} ratio_contour, {{ArgTypeAny}} ratio_thin, {{ArgTypeAny}} ratio_abs) EXAMPLE: ''emtempo_mesh_settings(30,0.1,0.1,0.02)'' DESCRIPTION: Sets the parameters of [[EM.Tempo]]'sadaptive mesh generator. ====emterrano_engine_settings==== SYNTAX: center strip width emterrano_engine_settings(or slot spacing{{ArgTypeAny}} bounce_count, {{ArgTypeAny}} do_edge_diffraction, {{ArgTypeAny}} angular_resolution, {{ArgTypeAny}} ray_threshhold) EXAMPLE: ''emterrano_engine_settings(5, h1,1,-100)'' DESCRIPTION: substrate heightSets the parameters of [[EM.Terrano]]'s SBR simulation engine. ====emterrano_mesh_settings==== SYNTAX: emterrano_mesh_settings({{ArgTypeAny}} edge_length, er{{ArgTypeAny}} angle_tol) EXAMPLE: substrate permittivity''emterrano_mesh_settings(5,10)'' DESCRIPTION: Sets the parameters of [[EM.Terrano]]'s facet mesh generator.|-| style="width===energy_electric==== SYNTAX:100px;energy_electric({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2) EXAMPLE: ''energy_electric(" | cpw_design_sFI_1",-10,-10,-10,10,10,10)'' DESCRIPTION: Creates an electric energy integral observable in [[EM.Ferma]]. If the observable 'label' already exists, its properties are modified. ====energy_magnetic==== SYNTAX: energy_magnetic(z0{{ArgTypeString}} label,w{{ArgTypeAny}} x1,h{{ArgTypeAny}} y1,er{{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2)| styleEXAMPLE: ''energy_magnetic("FI_1",-10,-10,-10,10,10,10)'' DESCRIPTION: Creates a magnetic energy integral observable in [[EM.Ferma]]. If the observable 'label' already exists, its properties are modified. ====explode==== SYNTAX: explode({{ArgTypeString}} object) EXAMPLE: ''explode("widthMyArray")'' DESCRIPTION:150px;Explodes an object into its basic primitives. ====export_dxf==== SYNTAX: export_dxf({{ArgTypeString}} file_name) EXAMPLE: ''export_dxf(" | EMAG Python functionMyDXFModel.DXF")'' DESCRIPTION: Exports the physical structure of the project workspacean to a DXF model file. If the file path is not specified, the current project folder is assumed as the path. | style====export_py==== SYNTAX: export_py({{ArgTypeString}} file_name) EXAMPLE: ''export_py("widthMyPYModel.PY")'' DESCRIPTION:250pxExports the physical structure of the project workspace or the current object selection to a Python geometry file. The default path is the Python subfolder under "Documents &rarr;EMAG" | Returns the center strip width . ====export_stl==== SYNTAX: export_stl(or slot spacing{{ArgTypeString}} file_name)  EXAMPLE: ''export_stl("MySTLModel.STL")'' DESCRIPTION: Exports the physical structure of a coplanar waveguide the project workspacean to an STL model file. If the file path is not specified, the current project folder is assumed as the path. ====extrude==== SYNTAX: extrude(CPW{{ArgTypeString}} label, {{ArgTypeString}} object, {{ArgTypeAny}} extrude_height, {{ArgTypeAny}} cap_ends) transmission line  EXAMPLE: ''extrude("Extrude_1","Rect_Strip1",50)'' DESCRIPTION: Creates or modifies an extrusion object from a specified object by the specified height. If modifying an existing extrusion object, the pre-existing primitive is used. This command can only extrude objects that have a single face and will extrude along the face's normal. | style="width===farfield==== SYNTAX:250px;farfield({{ArgTypeString}} label, {{ArgTypeAny}} theta_incr, {{ArgTypeAny}} phi_incr) EXAMPLE: ''farfield(" | FF_1",1,1)'' DESCRIPTION: Creates a far-field radiation pattern observable. If the observable 'label' already exists, its properties are modified. ====field_probe==== SYNTAX: field_probe({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0) EXAMPLE: characteristic impedance in Ohms''field_probe("FS_1", w0,0,50)'' DESCRIPTION: slot widthCreates a temporal field probe observable in [[EM.Tempo]] or [[EM.Ferma]]. If the observable 'label' already exists, hits properties are modified. ====field_sensor==== SYNTAX: substrate heightfield_sensor({{ArgTypeString}} label, er{{ArgTypeAny}} dir_coordinate, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} xSize, {{ArgTypeAny}} ySize, {{ArgTypeAny}} zSize, {{ArgTypeAny}} xSamples, {{ArgTypeAny}} ySamples, {{ArgTypeAny}} zSamples) EXAMPLE: substrate permittivity''field_sensor("FS_1","z",0,0,0,100,100,0,25,25,0)''|DESCRIPTION: Creates a near-field sensor observable. If the observable 'label' already exists, its properties are modified. | style====field_sensor_grid==== SYNTAX: field_sensor_grid({{ArgTypeString}} label, {{ArgTypeAny}} dir_coordinate, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0) EXAMPLE: ''field_sensor_grid("widthFS_1","z",0,0,0)'' DESCRIPTION:100px;Creates a near-field sensor observable in [[EM.Tempo]] or [[EM.Ferma]]. If the observable 'label' already exists, its properties are modified. ====fill_curve==== SYNTAX: fill_curve({{ArgTypeString}} object) EXAMPLE: ''fill_curve(" | coaxial_designCurve_1")'' DESCRIPTION: Fill the interior of the specified closed curve object. ====fillet==== fillet(z0{{ArgTypeString}} object,er{{ArgTypeAny}} radius)| styleEXAMPLE: ''fillet("Rect_1",5)'' DESCRIPTION: Fillets the corners of the specified surface or curve object by the specified radius. ====flux_electric==== SYNTAX: flux_electric({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2) EXAMPLE: ''flux_electric("widthFI_1",-10,-10,5,10,10,10)'' DESCRIPTION:150px;Creates an electric flux integral observable in [[EM.Ferma]]. If the observable 'label' already exists, its properties are modified. ====flux_magnetic==== SYNTAX: flux_magnetic({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2) EXAMPLE: ''flux_magnetic(" | EMAG Python functionFI_1",0,0,-10,10,0,10)'' DESCRIPTION: Creates a magnetic flux integral observable in [[EM.Ferma]]. If the observable 'label' already exists, its properties are modified. | style====fractal_tree==== SYNTAX: fractal_tree({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} key_type, {{ArgTypeAny}} key_size, {{ArgTypeAny}} n_level, {{ArgTypeAny}} sep_angle, {{ArgTypeAny}} n_gen, {{ArgTypeAny}} prune_factor, {{ArgTypeAny}} thickness, {{ArgTypeAny}} thick_factor) EXAMPLE: ''fractal_tree("widthFractal_1",0,0,0,"line",10,3,30,3,0,0,0)'' DESCRIPTION:250px;Generates a fractal tree in the project workspace under the currently activated material group node, or modifies the fractal tree named 'label' if it already exists. ====freeze==== SYNTAX: freeze({{ArgTypeString}} object, {{ArgTypeReal}} freeze_state) EXAMPLE: ''freeze(" | Returns MyObj",1)'' DESCRIPTION: Sets the ratio freeze state of an object (0/1).  ====gauss==== SYNTAX: gauss({{ArgTypeReal}} x, ArgTypeReal}} mu, ArgTypeReal}} sigma) EXAMPLE: ''gauss(0.5,0,1)'' DESCRIPTION: Computes and returns the Gaussian function of mean mu and standard deviation sigma: exp(-0.5*((x-mu)/sigma)**2)/sigma/sqrt(2*pi). ====gauss_beam==== SYNTAX: gauss_beam({{ArgTypeString}} label, {{ArgTypeAny}} theta, {{ArgTypeAny}} phi, {{ArgTypeAny}} polarization, {{ArgTypeAny}} focus_x, {{ArgTypeAny}} focus_y, {{ArgTypeAny}} focus_z, {{ArgTypeAny}} radius , {{ArgTypeAny}} p_mode, {{ArgTypeAny}} q_mode) EXAMPLE: ''gauss_beam("PW_1",180,0,"tm",0,0,0,20,0,0)'' DESCRIPTION: Creates a Gaussian beam source in [[EM.Tempo]]. If the Gaussian beam source 'label' already exists, its properties are modified. ====generate_input_files==== SYNTAX: generate_input_files() EXAMPLE: ''generate_input_files()'' DESCRIPTION: Generates all the input files for the simulation engine of the outer conductor to current module without running a simulation. ====geo==== SYNTAX: geo({{ArgTypeReal}} x, {{ArgTypeReal}} y) EXAMPLE: ''geo(1,2)'' DESCRIPTION: Computes and returns the radius geometric mean of x and y: sqrt(x*y). ====get_area==== SYNTAX: get_area({{ArgTypeString}} object) EXAMPLE: ''get_area("ellipse_1")'' DESCRIPTION: Returns the inner condutcor area of a coaxial transmission line surface object or the total surface area of a solid object. | style="width===get_axis==== SYNTAX:250px;" | z0get_axis({{ArgTypeString}} object, {{ArgTypeString}} axis, {{ArgTypeString}} coordinate) EXAMPLE: characteristic impedance in Ohms''get_axis("pyramid_1", er"x","y")'' DESCRIPTION: core permittivityReturns the specified coordinate of the unit vector along the specified local axis of an object.|-| style====get_domain_extent==== SYNTAX: get_domain_extent({{ArgTypeString}} coordinate) EXAMPLE: ''get_domain_extent("widthx")'' DESCRIPTION:100px;Returns the size of the computational domain along the specified direction. ====get_extent==== SYNTAX: get_extent({{ArgTypeString}} object, {{ArgTypeString}} coordinate) EXAMPLE: ''get_extent(" | waveguide_designpyramid_1","x")'' DESCRIPTION: Returns the size of the bounding box of an object along the specified direction. ====get_lcs==== SYNTAX: get_lcs(er{{ArgTypeString}} object,freq_hertz{{ArgTypeString}} coordinate)| styleEXAMPLE: ''get_lcs("pyramid_1","x")'' DESCRIPTION: Returns the specified coordinate of the LCS of an object. ====get_lcs_offset==== SYNTAX: get_lcs_offset({{ArgTypeString}} object, {{ArgTypeAny}} x_off, {{ArgTypeAny}} y_off, {{ArgTypeAny}} z_off, {{ArgTypeString}} coordinate) EXAMPLE: ''get_lcs_offset("widthbox_1",50,50,0,"x")'' DESCRIPTION:150px;Returns the specified coordinate of the LCS of an object after being translated by the specified offset values along the three principal axes. ====get_length==== SYNTAX: get_length({{ArgTypeString}} object) EXAMPLE: ''get_length(" | EMAG Python functionhelix_1")'' DESCRIPTION: Returns the length of a curve object. | style====get_rot==== SYNTAX: get_rot({{ArgTypeString}} object, {{ArgTypeString}} coordinate) EXAMPLE: ''get_rot("widthpyramid_1","x")'' DESCRIPTION:250px;Returns the specified rotation angle of an object. ====get_standard_output==== SYNTAX: get_standard_output({{ArgTypeString}} output_name)  EXAMPLE: ''get_standard_output(" | S11M")'' DESCRIPTION: Returns the minimum larger dimension in meter computed value of the cross section specified standard output parameter at the end of a hollow rectangular waveguide above cutoff simulation. | style====get_vertex==== SYNTAX: get_vertex({{ArgTypeString}} object, {{ArgTypeAny}} node_index, {{ArgTypeString}} coordinate) EXAMPLE: ''get_vertex("widthpyramid_1",0,"x")'' DESCRIPTION:250px;Returns the specified coordinate of the specified vertex of the bounding box of an object. The vertices are specified by node indices. The lower front left corner has an index of 0, while the upper back right corner has an index of 7. The indices are numbered counterclockwise, with the bottom face first and top face next.  ====get_volume==== SYNTAX: get_volume({{ArgTypeString}} object) EXAMPLE: ''get_volume(" | erpyramid_1")'' DESCRIPTION: filling permittivityReturns the volume of a solid object. ====global_ground==== SYNTAX: global_ground({{ArgTypeAny}} ground_on, freq_hertz{{ArgTypeAny}} eps, {{ArgTypeAny}} sigma) EXAMPLE: frequency in Hz''global_ground(1,3.3,0.001)''|-| styleDESCRIPTION: Set the state of [[EM.Terrano]]'s global ground and its material properties. A zero value for ground_on means to no global ground assumed at Z =0.  ====group==== SYNTAX: group({{ArgTypeString}} label, {{ArgTypeString}} object_1, {{ArgTypeString}} object_2, ...) EXAMPLE: ''group("widthComposite_1","Box_1","Box_2","Box_3")'' DESCRIPTION:100px;Groups a number of objects into a composite object with the given label. ====harm==== SYNTAX: harm({{ArgTypeReal}} x, {{ArgTypeReal}} y) EXAMPLE: ''harm(1,2)'' DESCRIPTION: Computes and returns the harmonic mean of x and y: 2/(1/x+1/y). ====helix==== SYNTAX: helix({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius_inner, {{ArgTypeAny}} radius_outer, {{ArgTypeAny}} nturns, {{ArgTypeAny}} helix_dir) EXAMPLE: ''helix(" | Helix_1",0,0,0,15,15,10,0)'' DESCRIPTION: Draws a helical curve in the project workspace under the currently activated material group node, or modifies the helix named 'label' if it already exists. The parameter "radius_inner" specifies the helix's radius at the beginning of the helix, and radius_outer specifies the radius at the end of the helix. If the Boolean parameter "helixl_dir" is 1, the helical curve will be drawn counter-clockwise. ====horn_design_a==== SYNTAX: horn_design_a({{ArgTypeReal}} D0_dB,{{ArgTypeReal}} a_lambda,{{ArgTypeReal}} b_lambda)| style="widthEXAMPLE:150px;" | EMAG Python function''horn_design_a(15,0.4,0.3)''| style="widthDESCRIPTION:250px;" | Returns Computes and returns the wavelength-normalized larger dimension of the aperture of an optimal pyramidal horn antenna | style="width:250px;" | D0_dB: with directivity d, a_lambda: D0_dB and wavelength-normalized larger dimension of the feed waveguide, dimensions a_lambda and b_lambda: wavelength-normalized smaller dimension of the feed waveguide .|-| style="width===horn_design_b==== SYNTAX:100px;" | horn_design_b({{ArgTypeReal}} D0_dB,{{ArgTypeReal}} a_lambda,{{ArgTypeReal}} b_lambda)| style="widthEXAMPLE:150px;" | EMAG Python function''horn_design_b(15,0.4,0.3)''| style="widthDESCRIPTION:250px;" | Returns Computes and returns the wavelength-normalized smaller dimension of the aperture of an optimal pyramidal horn antenna with directivity D0_dB and wavelength-normalized feed waveguide dimensions a_lambda and b_lambda. | style="width===horn_design_l==== SYNTAX:250px;" | horn_design_l({{ArgTypeReal}} D0_dB: directivity d, {{ArgTypeReal}} a_lambda, {{ArgTypeReal}} b_lambda) EXAMPLE: ''horn_design_l(15,0.4,0.3)'' DESCRIPTION: Computes and returns the wavelength-normalized larger dimension length of the feed waveguide, b_lambda: an optimal pyramidal horn antenna with directivity D0_dB and wavelength-normalized smaller dimension of the feed waveguide dimensions a_lambda and b_lambda.|-| style====huygens_src==== SYNTAX: huygens_src({{ArgTypeString}} label, {{ArgTypeAny}} filename[, {{ArgTypeAny}} set_lcs, {{ArgTypeAny}} polarization, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} x_rot, {{ArgTypeAny}} y_rot, {{ArgTypeAny}} z_rot]) EXAMPLE: ''huygens_src("widthHS_1","Huygens_1.HUY",1,100,100,0,0,0,0)'' DESCRIPTION:100px;Creates a Huygens source. If the Huygens source 'label' already exists, its properties are modified. ====huygens_surface==== SYNTAX: huygens_surface({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2, {{ArgTypeAny}} xSamples, {{ArgTypeAny}} ySamples, {{ArgTypeAny}} zSamples) EXAMPLE: ''huygens_surface(" | horn_design_lHS_1",-10,-10,-10,10,10,10,40,40,40)'' DESCRIPTION: Creates a Huygens surface observable. If the observable 'label' already exists, its properties are modified. ====huygens_surface_grid==== SYNTAX: huygens_surface_grid(D0_dB{{ArgTypeString}} label,a_lambda{{ArgTypeAny}} x1,b_lambda{{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2)| styleEXAMPLE: ''huygens_surface_grid("HS_1",-10,-10,-10,10,10,10)'' DESCRIPTION: Creates a Huygens surface observable in [[EM.Tempo]]. If the observable 'label' already exists, its properties are modified. ====hyperbola==== SYNTAX: hyperbola({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} diam_x, {{ArgTypeAny}} diam_y, {{ArgTypeAny}} axial_length, {{ArgTypeAny}} half_only) EXAMPLE: ''hyperbola("widthHyperbola _1",0,0,0,50,40,20,0)'' DESCRIPTION:150px;Draws a hyperbola object in the project workspace under the currently activated material group node, or modifies the hyperbola named 'label' if it already exists. If the Boolean parameter " | EMAG Python functionhalf_only" is 1, only half of the hyperbola will be drawn.  | style====impedance_surface_group==== SYNTAX: impedance_surface_group({{ArgTypeString}} label, {{ArgTypeAny}} z_real, {{ArgTypeAny}} z_imag) EXAMPLE: ''impedance_surface_group("widthIMP_1",100,-100)'' DESCRIPTION:250px;Creates a impedance_surface group in [[EM.Illumina]]. If the impedance surface group 'label' already exists, the group is activated. ====impenetrable_surface_group==== SYNTAX: impenetrable_surface_group({{ArgTypeString}} label, {{ArgTypeAny}} eps, {{ArgTypeAny}} sigma) EXAMPLE: ''impenetrable_surface_group(" | Returns Impenet_1",2.2,0.0001)'' DESCRIPTION: Creates an impenetrable surface group in [[EM.Terrano]]. If the wavelength-normalized length of impenetrable surface group 'label' already exists, the group is activated. ====import_dxf==== SYNTAX: import_dxf({{ArgTypeString}} file_name) EXAMPLE: ''import_dxf("MyDXFModel.DXF")'' DESCRIPTION: Imports an optimal pyramidal horn antenna external DXF model file to the project workspace. If the file path is not specified, the current project folder is assumed as the path. | style====import_igs==== SYNTAX: import_igs({{ArgTypeString}} file_name) EXAMPLE: ''import_igs("widthMyIGSModel.IGS")'' DESCRIPTION:250pxImports an external IGES model file to the project workspace. If the file path is not specified, the current project folder is assumed as the path. ====import_py==== SYNTAX: import_py({{ArgTypeString}} file_name) EXAMPLE: ''import_py("MyPYModel.PY")'' DESCRIPTION: Imports a Python geometry file to the project workspace. The default path is the Python subfolder under "Documents &rarr;EMAG" | D0_dB. ====import_stl==== SYNTAX: directivity dimport_stl({{ArgTypeString}} file_name) EXAMPLE: ''import_stl("MySTLModel.STL")'' DESCRIPTION: Imports an external STL model file to the project workspace. If the file path is not specified, a_lambdathe current project folder is assumed as the path. ====import_stp==== SYNTAX: wavelength-normalized larger dimension of import_stp({{ArgTypeString}} file_name) EXAMPLE: ''import_stp("MySTPModel.STP")'' DESCRIPTION: Imports an external STEP model file to the feed waveguideproject workspace. If the file path is not specified, b_lambdathe current project folder is assumed as the path. ====inductance==== SYNTAX: wavelengthinductance({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2, {{ArgTypeAny}} x3, {{ArgTypeAny}} y3, {{ArgTypeAny}} z3, {{ArgTypeAny}} x4, {{ArgTypeAny}} y4, {{ArgTypeAny}} z4) EXAMPLE: ''inductance("FI_1",0,0,-normalized smaller dimension of 10,10,0,10,2.5,-2.5,0,7.5,2.5,0)'' DESCRIPTION: Creates a inductance integral observable in [[EM.Ferma]]. If the feed waveguide observable 'label' already exists, its properties are modified.|====inductor==== SYNTAX: inductor({{ArgTypeString}} label, {{ArgTypeAny}} line_object, {{ArgTypeAny}} offset, {{ArgTypeAny}} inductance_nH) EXAMPLE: ''inductor("Cap_1","Line_1",25,10)'' DESCRIPTION: Creates a inductor in [[EM.Tempo]]. If the inductor 'label' already exists, its properties are modified. ====intersect==== SYNTAX: intersect({{ArgTypeString}} label, {{ArgTypeString}} object_1, {{ArgTypeString}} object_2) EXAMPLE: ''intersect("Intersection_Object","Rect_Strip1","Rect_Strip2")'' DESCRIPTION: Creates a Boolean object named 'label' by intersecting object_1 and object_2. An error will be thrown if a Boolean object named 'label' already exists. ====line==== SYNTAX: line({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} length[, {{ArgTypeAny}} dir]) EXAMPLE: ''line("my_line",0,0,0,100,"x")'' DESCRIPTION: Draws a Line object in the project workspace under the currently activated material group node, or modifies the line named 'label' if it already exists. Without the argument "dir", a vertical line is drawn by default.  ====loft==== SYNTAX: loft({{ArgTypeString}} label, {{ArgTypeString}} object, {{ArgTypeAny}} loft_height, {{ArgTypeAny}} cap_base) EXAMPLE: ''loft("Loft_1","Rect_Strip1",50)'' DESCRIPTION: Creates or modifies a loft object from a specified object by the specified height. If modifying an existing loft object, the pre-existing primitive is used. This command can only loft objects that have a single face and will loft along the face's normal.
== EM.Cube's Python Functions for Geometric Object Creation ==lumped_src====
====boxSYNTAX: lumped_src({{ArgTypeString}} label, {{ArgTypeAny}} x0line_object, {{ArgTypeAny}} y0offset, {{ArgTypeAny}} z0polarity[, {{ArgTypeAny}} base_x, {{ArgTypeAny}} base_y, {{ArgTypeAny}} height[amplitude, {{ArgTypeAny}} cap_topphase, {{ArgTypeAny}} cap_bottomresistance])====
EXAMPLE: ''Example: boxlumped_src("Box_1LS_1",0"Line_1",050,0,50,50,100)''
DescriptionDESCRIPTION: Draws Creates a box object lumped source in [[EM.Tempo]]. If the project workspace under the currently activated material group node, or modifies the box named lumped source 'label' if it already exists, its properties are modified.
====cylinder({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius, {{ArgTypeAny}} height[, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle, {{ArgTypeAny}} cap_top, {{ArgTypeAny}} cap_bottom])magnet_group====
''ExampleSYNTAX: cylindermagnet_group("Cylinder_1"{{ArgTypeString}} label,0{{ArgTypeAny}} mu,0{{ArgTypeAny}} Mx,0{{ArgTypeAny}} My,10,100{{ArgTypeAny}} Mz)''
DescriptionEXAMPLE: Draws a cylinder object in the project workspace under the currently activated material group node, or modifies the cylinder named 'label' if it already exists. The arguments start_angle and end_angle are in degrees and specify a sweep about the cylindermagnet_group("Magnet_1",1,0,0,100)''s azimuth axis.
====cone({{ArgTypeString}} DESCRIPTION: Creates a permanent magnet source group in [[EM.Ferma]]. If the magnet group 'label' already exists, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} base_radius, {{ArgTypeAny}} height[, {{ArgTypeAny}} top_radius, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle, {{ArgTypeAny}} cap_top, {{ArgTypeAny}} cap_bottom])====the group is activated.
''Example: cone("Cone_1",0,0,0,30,40,20,0,180)''====mcos====
DescriptionSYNTAX: Draws a cone object in the project workspace under the currently activated material group nodemcos({{ArgTypeReal}} x, or modifies the cone named 'label' if it already exists. The arguments start_angle and end_angle are in degrees and specify a sweep about the cone's azimuth axis.{{ArgTypeReal}} r)
====pyramidEXAMPLE: ''mcos({{ArgTypeString}} label0.5, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} base_x, {{ArgTypeAny}} base_y, {{ArgTypeAny}} height2)====''
''ExampleDESCRIPTION: pyramid("Pyramid_1",0,0,0,10,10,100)''Computes and returns the super-quadratic cosine function of order r.
Description: Draws a pyramid object in the project workspace under the currently activated material group node, or modifies the pyramid named 'label' if it already exists.====mean====
====sphereSYNTAX: mean({{ArgTypeStringArgTypeReal}} labelx, {{ArgTypeAnyArgTypeReal}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius[, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle]y)====
EXAMPLE: ''Example: spheremean("Sphere_1",0,0,0,10,01,1802)''
DescriptionDESCRIPTION: Draws a sphere object in Computes and returns the project workspace under the currently activated Material Group node, or modifies the sphere named 'label' if it already existsarithmetic mean of x and y: 0. The arguments start_angle and end_angle are in degrees and specify a sweep about the sphere's azimuth axis5*(x+y).
====ellipsoid({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius_x, {{ArgTypeAny}} radius_y, {{ArgTypeAny}} radius_z[, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle])merge_curve====
''ExampleSYNTAX: ellipsoidmerge_curve("Ellipsoid_1"{{ArgTypeString}} object_1,0,0,0,100,100,50,0,360{{ArgTypeString}} object_2)''
DescriptionEXAMPLE: Draws an ellipsoid object in the project workspace under the currently activated material group node, or modifies the ellipsoid named 'label' if it already exists. The arguments start_angle and end_angle are in degrees and specify a sweep about the ellipsoidmerge_curve("Curve_1","Curve_2")''s azimuth axis.
====torus({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius_major, {{ArgTypeAny}} radius_minor[, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle])====DESCRIPTION: Merges two specified curve objects into a single curve.
''Example: torus("Torus_1",0,0,0,50,20)''====mesh====
DescriptionSYNTAX: Draws an torus object in the project workspace under the currently activated material group node, or modifies the torus named 'label' if it already exists. The arguments start_angle and end_angle are in degrees and specify a sweep about the torus's azimuth axis.mesh()
====rect_strip({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} side_x, {{ArgTypeAny}} side_y)====DESCRIPTION: Generates and displays the mesh of the physical structure.
''Example: rect_strip("my_rectangle",0,0,0,50,20)''====microstrip_design====
DescriptionSYNTAX: Draws a rectangle Strip object in the project workspace under the currently activated material group nodemicrostrip_design({{ArgTypeReal}} z0, or modifies the rectangle strip object named 'label' if it already exists.{{ArgTypeReal}} er)
====circ_stripEXAMPLE: ''microstrip_design({{ArgTypeString}} label50, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} inner_radius, {{ArgTypeAny}} outer_radius[, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle]2.2)====''
''ExampleDESCRIPTION: circ_strip("cs_1",0,0,0,50,0)''Computes and returns the width-to-height ratio of a microstrip transmission line with characteristic impedance z0 in Ohms and substrate relative permittivity er.
Description: Draws a circle strip object in the project workspace under the currently activated material group node, or modifies the circle strip object named 'label' if it already exists. The arguments start_angle and end_angle are in degrees and specify a sweep about the circle strip's azimuth axis.====microstrip_eps_eff====
====radial_stripSYNTAX: microstrip_eps_eff({{ArgTypeStringArgTypeReal}} labelw, {{ArgTypeAnyArgTypeReal}} x0h, {{ArgTypeAnyArgTypeReal}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius, {{ArgTypeAny}} base_length, {{ArgTypeAny}} angleer)====
EXAMPLE: ''Example: radial_stripmicrostrip_eps_eff("Radial_1",0,0,0,502,0.5,902.2)''
DescriptionDESCRIPTION: Draws Computes and returns the effective permittivity of a radial strip object in the project workspace under the currently activated material group nodemicrostrip transmission line with width w, or modifies the radial strip object named 'label' if it already existssubstrate height h and substrate relative permittivity er.
====ellipse_strip({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius_x, {{ArgTypeAny}} radius_y[, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle])microstrip_lambda_g====
''ExampleSYNTAX: ellipse_stripmicrostrip_lambda_g("es_1"{{ArgTypeReal}} w,0{{ArgTypeReal}} h,0{{ArgTypeReal}} er,0,50,0{{ArgTypeReal}} freq_hertz)''
DescriptionEXAMPLE: Draws a ellipse strip object in the project workspace under the currently activated material group node, or modifies the ellipse strip object named 'label' if it already existsmicrostrip_lambda_g(2,0. The arguments start_angle and end_angle are in degrees and specify a sweep about the ellipse strip's azimuth axis5,2.2,2e9)''
====triangle_stripDESCRIPTION: Computes and returns the guide wavelength ({{ArgTypeString}} labelin meters) of a microstrip transmission line with width w, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} side1, {{ArgTypeAny}} side2, {{ArgTypeAny}} angle)====substrate height h and substrate relative permittivity er at an operating frequency of freq_hertz.
''Example: triangle_strip("ts_1",0,0,0,50,100,90)''====microstrip_src====
DescriptionSYNTAX: Draws a triangle strip object in the project workspace under the currently activated material group node, or modifies the triangle strip object named 'microstrip_src({{ArgTypeString}} label' if it already exists. , {{ArgTypeAny}} rect_object, {{ArgTypeAny}} height, {{ArgTypeAny}} edge[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance])
====taper_stripEXAMPLE: ''microstrip_src({{ArgTypeString}} label"MS_1", {{ArgTypeAny}} x0"Rect_1", {{ArgTypeAny}} y01.5, {{ArgTypeAny}} z0, {{ArgTypeAny}} base_width, {{ArgTypeAny}} top_width, {{ArgTypeAny}} length, {{ArgTypeAny}} is_expo"+x")====''
DESCRIPTION: Creates a microstrip port source in [[EM.Tempo]]. If the microstrip port 'label'Example: taper_strip("ts_1"already exists,0,0,0,50,100,80,1)''its properties are modified.
Description: Draws a taper strip object in the project workspace under the currently activated material group node, or modifies the taper strip object named 'label' if it already exists. If the Boolean parameters "is_expo" is 1, an exponential taper will be drawn. ====microstrip_z0====
====polygon_regSYNTAX: microstrip_z0({{ArgTypeStringArgTypeReal}} labelw, {{ArgTypeAnyArgTypeReal}} x0h, {{ArgTypeAnyArgTypeReal}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius, {{ArgTypeAny}} n_sideser)====
EXAMPLE: ''Example: polygon_regmicrostrip_z0("ts_1"2,0.5,0,0,50,100,80,12.2)''
DescriptionDESCRIPTION: Draws Computes and returns the characteristic impedance (in Ohms) of a regular polygon object in the project workspace under the currently activated material group nodemicrostrip transmission line with width w, or modifies the regular polygon object named 'label' if it already existssubstrate height h and substrate relative permittivity er.
====spiral_strip({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} width, {{ArgTypeAny}} radius_inner, {{ArgTypeAny}} radius_outer, {{ArgTypeAny}} nturns, {{ArgTypeAny}} spiral_dir, {{ArgTypeAny}} is_dual)microstrip_zoc====
''ExampleSYNTAX: spiral_stripmicrostrip_zoc("Spiral _1"{{ArgTypeReal}} w,0{{ArgTypeReal}} l,0{{ArgTypeReal}} h,0{{ArgTypeReal}} er,10,50,5,0,0{{ArgTypeReal}} freq_hertz)''
DescriptionEXAMPLE: Draws a spiral strip object in the project workspace under the currently activated material group node, or modifies the spiral strip named 'label' if it already exists. If the Boolean parameter "spiral_dir" is 1microstrip_zoc(2, the spiral curve will be drawn counter-clockwise25,0. If the Boolean parameter "is_dual" is 15, a dual-arm spiral curve will be drawn2. 2,2e9)''
====polystripDESCRIPTION: Computes and returns the input reactance ({{ArgTypeString}} labelin Ohms) of an open-circuited microstrip transmission line with width w, {{ArgType| 3x1 Python tuple}} p0, {{ArgType| 3x1 Python tuple}} p1length l, substrate height h and substrate relative permittivity er at an operating frequency of freq_hertz... {{ArgType| 3x1 Python tuple}} pn)====
''Example: polystrip("ps_1",(0,0,0),(1,0,0),(1,0,0))''====microstrip_zsc====
DescriptionSYNTAX: Creates or modifies a Polystrip object in the project workspace. Each point is represented with a Python tuple type. The poly_strip function is 'self-closing' -- there is no need to supply the first point again at the end of the point list.microstrip_zsc({{ArgTypeReal}} w, {{ArgTypeReal}} l, {{ArgTypeReal}} h, {{ArgTypeReal}} er, {{ArgTypeReal}} freq_hertz)
====nurbs_stripEXAMPLE: ''microstrip_zsc({{ArgTypeString}} label2, {{ArgType| 3x1 Python tuple}} p025, {{ArgType| 3x1 Python tuple}} p10.5, 2... {{ArgType| 3x1 Python tuple}} pn2,2e9)====''
''ExampleDESCRIPTION: nurbs_stripComputes and returns the input reactance ("ns_1",(0,0,0in Ohms)of a short-circuited microstrip transmission line with width w,(1length l,0,0),(1,0,0))''substrate height h and substrate relative permittivity er at an operating frequency of freq_hertz.
Description: Creates or modifies a NURBS Strip object in the project workspace. Each point is represented with a Python tuple type. The nurbs_strip function is 'self-closing' -- there is no need to supply the first point again at the end of the point list.====mirror====
====lineSYNTAX: mirror({{ArgTypeString}} labelobject, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} length[uX, {{ArgTypeAny}} dir]uY, {{ArgTypeAny}} uZ)====
EXAMPLE: ''Example: linemirror("my_linepyramid_1",0,0,0,1001,"x"0,0)''
DescriptionDESCRIPTION: Draws a Line Mirrors an object in the project workspace under the currently activated material group node, or modifies the line named 'label' if it already exists. Without the argument "dir", a vertical line is drawn plane defined by defaultthe specified point coordinates and specified normal vector components.
====circle({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle)move_to====
''ExampleSYNTAX: circlemove_to("pyramid_1"{{ArgTypeString}} object,0 {{ArgTypeString}} group_node_label[,0,0,10,10,100{{ArgTypeString}} module_name])''
DescriptionEXAMPLE: Draws a circular curve object in the project workspace under the currently activated material group node''move_to("NewObj","MyObj",10,10, or modifies the circle named 0)'label' if it already exists. The parameters start_angle and end_angle are in degrees.
====superquad({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} diam_x, {{ArgTypeAny}} diam_y, {{ArgTypeAny}} order)====DESCRIPTION: Transfers an object from its current material/object group node in the navigation tree to another node or optionally to another [[EM.Cube]] module.
''Example: superquad("SuperQuad_1",0,0,0,50,20,4)''====msin====
DescriptionSYNTAX: Draws a super-quadratic curve object in the project workspace under the currently activated material group nodemsin({{ArgTypeReal}} x, or modifies the super-quadratic curve named 'label' if it already exists. If order = 2, the curve reduces to an ellipse. Higher order make the round edges sharper. An infinite order reduces the curve to a rectangle. {{ArgTypeReal}} r)
====parabolaEXAMPLE: ''msin({{ArgTypeString}} label0.5, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} focal_length, {{ArgTypeAny}} axial_length, {{ArgTypeAny}} half_only2)====''
''ExampleDESCRIPTION: parabola("Parabola _1",0,0,0,50,20,0)''Computes and returns the super-quadratic sine function of order r.
Description: Draws a parabola object in the project workspace under the currently activated material group node, or modifies the parabola named 'label' if it already exists. If the Boolean parameter "half_only" is 1, only half of the parabola will be drawn. ====nurbs_curve====
====hyperbolaSYNTAX: nurbs_curve({{ArgTypeString}} label, {{ArgTypeAnyArgType| 3x1 Python tuple}} x0p0, {{ArgTypeAnyArgType| 3x1 Python tuple}} y0p1, ... {{ArgTypeAnyArgType| 3x1 Python tuple}} z0, {{ArgTypeAny}} diam_x, {{ArgTypeAny}} diam_y, {{ArgTypeAny}} axial_length, {{ArgTypeAny}} half_onlypn)====
EXAMPLE: ''Example: hyperbolanurbs_curve("Hyperbola _1nc_1",(0,0,0),50(1,400,200),(1,0,0))''
DescriptionDESCRIPTION: Draws Creates or modifies a hyperbola NURBS Curve object in the project workspace under the currently activated material group node, or modifies the hyperbola named 'label' if it already exists. If the Boolean parameter "half_only" Each point is 1represented with a Python tuple type. The curve is closed if p0 is specified again as pn, only half of the hyperbola will be drawnotherwise, it is open.
====spiral_curve({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius_inner, {{ArgTypeAny}} radius_outer, {{ArgTypeAny}} nturns, {{ArgTypeAny}} spiral_dir, {{ArgTypeAny}} is_dual)nurbs_strip====
''ExampleSYNTAX: spiral_curvenurbs_strip("Spiral _1"{{ArgTypeString}} label,0{{ArgType| 3x1 Python tuple}} p0,0{{ArgType| 3x1 Python tuple}} p1,0,10,50,5,0,0... {{ArgType| 3x1 Python tuple}} pn)''
DescriptionEXAMPLE: Draws a spiral curve object in the project workspace under the currently activated material group node, or modifies the spiral curve named 'label' if it already exists. If the Boolean parameter nurbs_strip("spiral_dirns_1" is ,(0,0,0),(1, the spiral curve will be drawn counter-clockwise. If the Boolean parameter "is_dual" is 0,0),(1, a dual-arm spiral curve will be drawn. 0,0))''
====helix({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius_inner, {{ArgTypeAny}} radius_outer, {{ArgTypeAny}} nturns, {{ArgTypeAny}} helix_dir)====DESCRIPTION: Creates or modifies a NURBS Strip object in the project workspace. Each point is represented with a Python tuple type. The nurbs_strip function is 'self-closing' -- there is no need to supply the first point again at the end of the point list.
''Example: helix("Helix_1",0,0,0,15,15,10,0)''====ohmic_loss====
DescriptionSYNTAX: Draws a helical curve in the project workspace under the currently activated material group node, or modifies the helix named 'ohmic_loss({{ArgTypeString}} label' if it already exists. The parameter "radius_inner" specifies the helix's radius at the beginning of the helix, and radius_outer specifies the radius at the end of the helix. If the Boolean parameter "helixl_dir" is 1{{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, the helical curve will be drawn counter-clockwise. {{ArgTypeAny}} z2)
====polylineEXAMPLE: ''ohmic_loss({{ArgTypeString}} label"FI_1", {{ArgType| 3x1 Python tuple}} p0-10, {{ArgType| 3x1 Python tuple}} p1-10, ... {{ArgType| 3x1 Python tuple}} pn-10,10,10,10)====''
DESCRIPTION: Creates an ohmic loss integral observable in [[EM.Ferma]]. If the observable 'label'Example: polyline("pl_1"already exists,(0,0,0),(1,0,0),(1,0,0))''its properties are modified.
Description: Creates or modifies a PolyLine object in the project workspace. Each point is represented with a Python tuple type. The poly_line is closed if p0 is specified again as pn, otherwise, it is open.====parabola====
====nurbs_curveSYNTAX: parabola({{ArgTypeString}} label, {{ArgType| 3x1 Python tupleArgTypeAny}} p0x0, {{ArgType| 3x1 Python tupleArgTypeAny}} p1y0, ... {{ArgType| 3x1 Python tupleArgTypeAny}} pnz0, {{ArgTypeAny}} focal_length, {{ArgTypeAny}} axial_length, {{ArgTypeAny}} half_only)====
EXAMPLE: ''Example: nurbs_curveparabola("nc_1Parabola _1",(0,0,0),(150,0,0),(1,020,0))''
DescriptionDESCRIPTION: Creates or modifies Draws a NURBS Curve parabola object in the project workspaceunder the currently activated material group node, or modifies the parabola named 'label' if it already exists. Each point If the Boolean parameter "half_only" is represented with a Python tuple type. The curve is closed if p0 is specified again as pn1, otherwise, it is openonly half of the parabola will be drawn.
====point({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0)param_curve====
''ExampleSYNTAX: pointparam_curve("Point_1"{{ArgTypeString}} label,0{{ArgTypeAny}} x0,0{{ArgTypeAny}} y0,10{{ArgTypeAny}} z0, {{ArgTypeAny}} model, {{ArgTypeAny}} orientation, {{ArgTypeAny}} start, {{ArgTypeAny}} stop, {{ArgTypeAny}} step, {{ArgTypeAny}} function[, {{ArgTypeAny}} y(t), {{ArgTypeAny}} z(t)])''
DescriptionEXAMPLE: Draws a point in the project workspace under the currently activated material group node, or modifies the point named 'label' if it already existsparam_curve("Curve_1",0,0,0,"parametric","xy",0,10,0.1,"cos(t)","sin(t)","t")''
====fractal_tree({{ArgTypeString}} DESCRIPTION: Generates a parametric curve in the project workspace under the currently activated material group node, or modifies the parametric curve named 'label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} key_type, {{ArgTypeAny}} key_size, {{ArgTypeAny}} n_level, {{ArgTypeAny}} sep_angle, {{ArgTypeAny}} n_gen, {{ArgTypeAny}} prune_factor, {{ArgTypeAny}} thickness, {{ArgTypeAny}} thick_factor)====' if it already exists.
''Example: fractal_tree("Fractal_1",0,0,0,"line",10,3,30,3,0,0,0)''====param_surface====
DescriptionSYNTAX: Generates a fractal tree in the project workspace under the currently activated material group node, or modifies the fractal tree named 'param_surface({{ArgTypeString}} label' if it already exists., {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} orientation, {{ArgTypeAny}} start1, {{ArgTypeAny}} stop1, {{ArgTypeAny}} step1, , {{ArgTypeAny}} start2, {{ArgTypeAny}} stop2, {{ArgTypeAny}} step2, {{ArgTypeAny}} function)
====param_curveEXAMPLE: ''param_surface({{ArgTypeString}} label"Surf_1", {{ArgTypeAny}} x00, {{ArgTypeAny}} y00, {{ArgTypeAny}} z00, {{ArgTypeAny}} model"xy", {{ArgTypeAny}} orientation0, {{ArgTypeAny}} start10, {{ArgTypeAny}} stop0.1, {{ArgTypeAny}} step0, {{ArgTypeAny}} function[10, {{ArgTypeAny}} y0.1,"sin(tx), {{ArgTypeAny}} z*sin(ty)]")====''
''ExampleDESCRIPTION: param_curve("Curve_1"Generates a parametric surface in the project workspace under the currently activated material group node,0,0,0,"or modifies the parametric","xy",0,10,0.1,"cos(t)","sin(t)","t")surface named 'label'if it already exists.
Description: Generates a parametric curve in the project workspace under the currently activated material group node, or modifies the parametric curve named 'label' if it already exists.====pec_group====
====param_surfaceSYNTAX: pec_group({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} orientation, {{ArgTypeAny}} start1, {{ArgTypeAny}} stop1, {{ArgTypeAny}} step1, , {{ArgTypeAny}} start2, {{ArgTypeAny}} stop2, {{ArgTypeAny}} step2, {{ArgTypeAny}} function)====
EXAMPLE: ''Example: param_surfacepec_group("Surf_1",0,0,0,"xy",0,10,0.1,0,10,0.1,"sin(x)*sin(y)PEC_1")''
DescriptionDESCRIPTION: Generates Creates a parametric surface PEC material group in the project workspace under current module. If the currently activated material PEC group node, or modifies the parametric surface named 'label' if it already exists, the group is activated.
====import_stl({{ArgTypeString}} file_name)pec_via_group====
''ExampleSYNTAX: import_stlpec_via_group("MySTLModel.STL"{{ArgTypeString}} label, {{ArgTypeAny}} host_layer)''
DescriptionEXAMPLE: Imports an external STL model file to the project workspace. If the file path is not specified''pec_via_group("PEC_1", the current project folder is assumed as the path.10)''
====import_dxf({{ArgTypeString}} file_name)====DESCRIPTION: Creates an embedded PEC via set group in the current module. If the PEC via group 'label' already exists, the group is activated.
''Example: import_dxf("MyDXFModel.DXF")''====pec_voltage_group====
DescriptionSYNTAX: Imports an external DXF model file to the project workspace. If the file path is not specifiedpec_voltage_group({{ArgTypeString}} label, the current project folder is assumed as the path.{{ArgTypeAny}} voltage)
====import_stpEXAMPLE: ''pec_voltage_group({{ArgTypeString}} file_name"PEC_1",10)====''
''ExampleDESCRIPTION: import_stp("MySTPModelCreates a fixed-potential PEC object group in the current module.STP") If the PEC group 'label'already exists, the group is activated.
Description: Imports an external STEP model file to the project workspace. If the file path is not specified, the current project folder is assumed as the path.====penetrable_surface_group====
====import_igsSYNTAX: penetrable_surface_group({{ArgTypeString}} file_namelabel, {{ArgTypeAny}} eps, {{ArgTypeAny}} sigma, {{ArgTypeAny}} thickness)====
EXAMPLE: ''Example: import_igspenetrable_surface_group("MyIGSModel.IGSPenet_1",2.2,0.0001, 1)''
DescriptionDESCRIPTION: Imports an external IGES model file to the project workspaceCreates a penetrable surface group in [[EM.Terrano]]. If the file path is not specifiedpenetrable surface group 'label' already exists, the current project folder group is assumed as the pathactivated.
====import_py({{ArgTypeString}} file_name)penetrable_volume_group====
''ExampleSYNTAX: import_pypenetrable_volume_group("MyPYModel.PY"{{ArgTypeString}} label, {{ArgTypeAny}} eps, {{ArgTypeAny}} sigma)''
DescriptionEXAMPLE: Imports a Python geometry file to the project workspace. The default path is the Python subfolder under ''penetrable_volume_group("Documents &rarr; EMAGVol_Penet_1",2.2,0.0001)''
====export_stl({{ArgTypeString}} file_name)====DESCRIPTION: Creates a penetrable volume group in [[EM.Terrano]]. If the penetrable volume group 'label' already exists, the group is activated.
''Example: export_stl("MySTLModel.STL")''====pipe_sweep====
DescriptionSYNTAX: Exports the physical structure of the project workspacean to an STL model file. If the file path is not specifiedpipe_sweep({{ArgTypeString}} object, the current project folder is assumed as the path.{{ArgTypeAny}} radius)
====export_dxfEXAMPLE: ''pipe_sweep({{ArgTypeString}} file_name"Curve_1",5)====''
''ExampleDESCRIPTION: export_dxf("MyDXFModelCreates a pipe version of a given curve object.DXF")''
Description: Exports the physical structure of the project workspacean to a DXF model file. If the file path is not specified, the current project folder is assumed as the path.====planewave====
====export_pySYNTAX: planewave({{ArgTypeString}} file_namelabel, {{ArgTypeAny}} theta, {{ArgTypeAny}} phi, {{ArgTypeAny}} polarization)====
''ExampleEXAMPLE: export_py''planewave("MyPYModel.PYPW_1",180,0,"tm")''
DescriptionDESCRIPTION: Exports the physical structure of the project workspace or the current object selection to Creates a Python geometry fileplane wave source. The default path is If the Python subfolder under "Documents &rarr; EMAG"plane wave source 'label' already exists, its properties are modified.
== EM.Cube's Python Functions for Geometric Object Transformation ==plot_file====
====cloneSYNTAX: plot_file({{ArgTypeString}} label, {{ArgTypeString}} object, {{ArgTypeReal}} x0, {{ArgTypeReal}} y0, {{ArgTypeReal}} z0filename)====
EXAMPLE: ''Example: cloneplot_file("NewObj","MyObjD0.DAT",10,10,0)''
DescriptionDESCRIPTION: Creates Plots the contents of a copy of the specified object and repositions it at the given coordinatesdata file in EM.Grid.
====translate_by({{ArgTypeString}} object, {{ArgTypeReal}} x_dist, {{ArgTypeReal}} y_dist, {{ArgTypeReal}} z_dist)pmc_group====
''ExampleSYNTAX: translate_bypmc_group("MyObj",10,10,x{{ArgTypeString}} label)''
DescriptionEXAMPLE: Translates an object by the specified distances in each direction.''pmc_group("PMC_1")''
====translate_to({{ArgTypeString}} objectDESCRIPTION: Creates a PMC material group in the current module. If the PMC group 'label' already exists, {{ArgTypeReal}} x_dest, {{ArgTypeReal}} y_dest, {{ArgTypeReal}} z_dest)====the group is activated.
''Example: translate_to("MyObj",20,20,x2)''====point====
DescriptionSYNTAX: Translates an object to the specified destination.point({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0)
====rotateEXAMPLE: ''point({{ArgTypeString}} object"Point_1", {{ArgTypeAny}} rot_angle_degree0, {{ArgTypeAny}} rot_axis_x0, {{ArgTypeAny}} rot_axis_y, {{ArgTypeAny}} rot_axis_z10)====''
''ExampleDESCRIPTION: rotate("Pyramid_1",45,1,1Draws a point in the project workspace under the currently activated material group node,0)or modifies the point named 'label'if it already exists.
Description: Rotates an object about a line passing through its LCS center and aligned along the specified direction vector (rot_axis) by the specified angle.====polygon_reg====
====scaleSYNTAX: polygon_reg({{ArgTypeString}} objectlabel, {{ArgTypeAny}} scale_factorx0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius, {{ArgTypeAny}} n_sides)====
EXAMPLE: ''Example: scalepolygon_reg("pyramid_1ts_1",20,0,0,50,100,80,1)''
DescriptionDESCRIPTION: Scales an Draws a regular polygon object by in the specified scale factorproject workspace under the currently activated material group node, or modifies the regular polygon object named 'label' if it already exists.
====mirror({{ArgTypeString}} object, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} uX, {{ArgTypeAny}} uY, {{ArgTypeAny}} uZ)polygonize====
''ExampleSYNTAX: mirrorpolygonize("pyramid_1"{{ArgTypeString}} object,0,0,0,1,0,0{{ArgTypeAny}} side_length)''
DescriptionEXAMPLE: Mirrors an object in a plane defined by the specified point coordinates and specified normal vector components.''polygonize("Cric_1",2)''
====group({{ArgTypeString}} label, {{ArgTypeString}} object_1, {{ArgTypeString}} object_2, DESCRIPTION: Polygonizes the specified surface or curve object by the specified side length.The results is a polystrip or a polyline..)====
''Example: group("Composite_1","Box_1","Box_2","Box_3")''====polyline====
DescriptionSYNTAX: Groups a number of objects into a composite object with the given polyline({{ArgTypeString}} label, {{ArgType| 3x1 Python tuple}} p0, {{ArgType| 3x1 Python tuple}} p1, ... {{ArgType| 3x1 Python tuple}} pn)
====arrayEXAMPLE: ''polyline({{ArgTypeString}} label"pl_1", {{ArgTypeString}} object(0, {{ArgTypeAny}} x_count0, {{ArgTypeAny}} y_count0), {{ArgTypeAny}} z_count(1, {{ArgTypeAny}} x_spacing0, {{ArgTypeAny}} y_spacing0), {{ArgTypeAny}} z_spacing(1,0,0))====''
''ExampleDESCRIPTION: array("Array_1"Creates or modifies a PolyLine object in the project workspace. Each point is represented with a Python tuple type. The poly_line is closed if p0 is specified again as pn,"Rect_Strip_1"otherwise,4,4,1,50,50,0)''it is open.
Description: Creates or modifies an array object.====polymesh====
====array_customSYNTAX: polymesh({{ArgTypeString}} label, {{ArgTypeString}} object, {{ArgTypeAny}} x_count, {{ArgTypeAny}} y_count, {{ArgTypeAny}} z_count, {{ArgTypeAny}} x_spacing, {{ArgTypeAny}} y_spacing, {{ArgTypeAny}} z_spacing, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} rot_x, {{ArgTypeAny}} rot_y, {{ArgTypeAny}} rot_zedge_length)====
EXAMPLE: ''Example: array_custompolymesh("Array_1Poly_1","Rect_Strip_1Cric_1",4,4,1,50,50,0,100,100,20,0,0,452)''
DescriptionDESCRIPTION: Creates Discretizes the specified solid or modifies an array surface object by the specified edge length. The results is a polymesh object and sets its local coordinate system and rotation angles.
====explode({{ArgTypeString}} object)polystrip====
''ExampleSYNTAX: explodepolystrip("MyArray"{{ArgTypeString}} label, {{ArgType| 3x1 Python tuple}} p0, {{ArgType| 3x1 Python tuple}} p1, ... {{ArgType| 3x1 Python tuple}} pn)''
DescriptionEXAMPLE: Explodes an object into its basic primitives.''polystrip("ps_1",(0,0,0),(1,0,0),(1,0,0))''
====subtract({{ArgTypeString}} label, {{ArgTypeString}} object_1, {{ArgTypeString}} object_2)====DESCRIPTION: Creates or modifies a Polystrip object in the project workspace. Each point is represented with a Python tuple type. The poly_strip function is 'self-closing' -- there is no need to supply the first point again at the end of the point list.
''Example: subtract("Subtract_Object","Rect_Strip1","Rect_Strip2")''====port_definition_custom====
DescriptionSYNTAX: Creates a Boolean object named 'port_definition_custom({{ArgTypeString}} label' by subtracting object_2 from object_1, ({{ArgTypeString}} port_1_src_1, {{ArgTypeString}} port_1_src_2, ..., {{ArgTypeString}} port_1_impedance), ({{ArgTypeString}} port_2_src_1, {{ArgTypeString}} port_2_src_2, ..., {{ArgTypeString}} port_2_impedance), .. An error will be thrown if a Boolean object named 'label' already exists.)
====unionEXAMPLE: ''port_definition_custom({{ArgTypeString}} label"PD_1", {{ArgTypeString}} object_1("LS_1", {{ArgTypeString}} object_2"LS_2",50),,("LS_3","LS_4",50))====''
DESCRIPTION: Creates a custom port definition observable. If the observable 'label'Example: union("Union_Object"already exists,"Rect_Strip1","Rect_Strip2")''its properties are modified.
Description: Creates a Boolean object named 'label' by unioning object_1 and object_2. An error will be thrown if a Boolean object named 'label' already exists.====port_definition_default====
====intersectSYNTAX: port_definition_default({{ArgTypeString}} label, {{ArgTypeString}} object_1, {{ArgTypeString}} object_2)====
EXAMPLE: ''Example: intersectport_definition_default("Intersection_Object","Rect_Strip1","Rect_Strip2PD_1")''
DescriptionDESCRIPTION: Creates a Boolean object named 'label' by intersecting object_1 and object_2default port definition observable. An error will be thrown if a Boolean object named If the observable 'label' already exists, its properties are modified.
====extrude({{ArgTypeString}} label, {{ArgTypeString}} object, {{ArgTypeAny}} extrude_height, {{ArgTypeAny}} cap_ends)probe_gap_src====
''ExampleSYNTAX:extrudeprobe_gap_src("Extrude_1"{{ArgTypeString}} label,"Rect_Strip1"{{ArgTypeAny}} via_object,50{{ArgTypeAny}} polarity[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance])''
DescriptionEXAMPLE: Creates or modifies an extrusion object from a specified object by the specified height. If modifying an existing extrusion object''probe_gap_src("Probe_1", the pre-existing primitive is used. This command can only extrude objects that have a single face and will extrude along the face"Via_1",0)''s normal.
====loft({{ArgTypeString}} DESCRIPTION: Creates a probe gap circuit source in [[EM.Picasso]]. If the probe gap source 'label' already exists, {{ArgTypeString}} object, {{ArgTypeAny}} loft_height, {{ArgTypeAny}} cap_base)====its properties are modified.
''Example: loft("Loft_1","Rect_Strip1",50)''====pyramid====
DescriptionSYNTAX: Creates or modifies a loft object from a specified object by the specified height. If modifying an existing loft objectpyramid({{ArgTypeString}} label, the pre-existing primitive is used. This command can only loft objects that have a single face and will loft along the face's normal.{{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} base_x, {{ArgTypeAny}} base_y, {{ArgTypeAny}} height)
====revolveEXAMPLE: ''pyramid({{ArgTypeString}} label"Pyramid_1", {{ArgTypeString}} object0, {{ArgTypeAny}} x00, {{ArgTypeAny}} y00, {{ArgTypeAny}} z010, {{ArgTypeAny}} uX10, {{ArgTypeAny}} uY, {{ArgTypeAny}} uZ, {{ArgTypeAny}} rot_angle100)====''
''ExampleDESCRIPTION: revolve("Rev1","Line_1",0,0,0,0,0,1Draws a pyramid object in the project workspace under the currently activated material group node,360)or modifies the pyramid named 'label'if it already exists.
Description: Creates or modifies a revolution object from a specified object. If modifying an existing revolution object, the pre-existing primitive object is used. (x0,y0,z0) specifies the center of revolution, and (uX,uY,uZ) specifies the revolution axis. The revolution angle "rot_angle" is given in degrees.====radial_strip====
====consolidateSYNTAX: radial_strip({{ArgTypeString}} objectlabel, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius, {{ArgTypeAny}} base_length, {{ArgTypeAny}} angle)====
EXAMPLE: ''Example: consolidateradial_strip("Poly_1Radial_1",0,0,0,50,0,90)''
DescriptionDESCRIPTION: Consolidates Draws a specified radial strip objectin the project workspace under the currently activated material group node, or modifies the radial strip object named 'label' if it already exists.
====spline_fit({{ArgTypeString}} object)rail_sweep====
''ExampleSYNTAX: spline_fitrail_sweep("Poly_1"{{ArgTypeString}} rail_object, {{ArgTypeString}} sweep_object)''
DescriptionEXAMPLE: Applies spline fit transformation on a specified polymesh''rail_sweep("Curve_1", polyline or polystrip object."Curve_2")''
====fill_curve({{ArgTypeString}} DESCRIPTION: Rail-sweeps the specified sweep object)====along the specified curve object.
''Example: fill_curve("Curve_1")''====ramp====
DescriptionSYNTAX: Fill the interior of the specified closed curve object.ramp({{ArgTypeReal}} x)
====merge_curveEXAMPLE: ''ramp({{ArgTypeString}} object_1, {{ArgTypeString}} object_20.5)====''
''ExampleDESCRIPTION: merge_curve("Curve_1"Computes and returns the ramp function: x if x>0,"Curve_2")''0 if x<0.
Description: Merges two specified curve objects into a single curve.====rand====
====close_curveSYNTAX: rand({{ArgTypeStringArgTypeReal}} labelx, {{ArgTypeStringArgTypeReal}} close_statey)====
EXAMPLE: ''Example: close_curverand("Curve_1"0,1)''
DescriptionDESCRIPTION: Sets the open/close state of Computes and returns a polyline or NURBS curve. Use 0 for open curve random number between x and 1 for close curvey using an uniform distribution.
====polygonize({{ArgTypeString}} object, {{ArgTypeAny}} side_length)random_group====
''ExampleSYNTAX: polygonizerandom_group("Cric_1"{{ArgTypeString}} label,2{{ArgTypeString}} key_object, {{ArgTypeString}} container_object, {{ArgTypeAny}} element_count)''
DescriptionEXAMPLE: Polygonizes the specified surface or curve object by the specified side length. The results is a polystrip or a polyline.''random_group("Rand_1","Rect_1","Box_1",100)''
====polymesh({{ArgTypeString}} label, {{ArgTypeString}} DESCRIPTION: Creates a random group using the specified key object, {{ArgTypeAny}} edge_length)====and confines them in the specified container object.
''Example: polymesh("Poly_1","Cric_1",2)''====rcs_bistatic====
DescriptionSYNTAX: Discretizes the specified solid or surface object by the specified edge length. The results is a polymesh object.rcs_bistatic({{ArgTypeString}} label, {{ArgTypeAny}} theta_incr, {{ArgTypeAny}} phi_incr[, {{ArgTypeAny}} frequency])
====filletEXAMPLE: ''rcs_bistatic({{ArgTypeString}} object"RCS_1", {{ArgTypeAny}} radius1,1)====''
DESCRIPTION: Creates a bistatic RCS observable. The frequency can also be optionally specified for [[EM.Tempo]]. If the observable 'label'Example: fillet("Rect_1"already exists,5)''its properties are modified.
Description: Fillets the corners of the specified surface or curve object by the specified radius.====rcs_monostatic====
====sliceSYNTAX: rcs_monostatic({{ArgTypeString}} objectlabel, {{ArgTypeAny}} x0theta_incr, {{ArgTypeAny}} y0phi_incr[, {{ArgTypeAny}} z0, {{ArgTypeAny}} uX, {{ArgTypeAny}} uY, {{ArgTypeAny}} uZfrequency])====
EXAMPLE: ''Example: filletrcs_monostatic("Rect_1RCS_1",51,1)''
DescriptionDESCRIPTION: Slices the specified object into two parts using the Creates a monostatic RCS observable. The frequency can also be optionally specified plane given by for [[EM.Tempo]]. If the point coordinates and normal vector coordinatesobservable 'label' already exists, its properties are modified.
====roughen({{ArgTypeString}} label, {{ArgTypeString}} object, {{ArgTypeAny}} rms_height, {{ArgTypeAny}} correl_length)receiver_set====
''ExampleSYNTAX: roughenreceiver_set("Rect_1"{{ArgTypeString}} label,1{{ArgTypeAny}} base_point_set[,5{{ArgTypeAny}} pattern_file, {{ArgTypeAny}} rot_x, {{ArgTypeAny}} rot_y, {{ArgTypeAny}} rot_z)''
DescriptionEXAMPLE: Roughens the surface of the specified object based on the specified RMS height and correlation length''receiver_set("TX_1","PT_1","DPL_STD.RAD",0,90,0)''
====random_group({{ArgTypeString}} DESCRIPTION: Creates a receiver set in [[EM.Terrano]]. If the receiver set 'label' already exists, {{ArgTypeString}} key_object, {{ArgTypeString}} container_object, {{ArgTypeAny}} element_count)====its properties are modified.
''Example: random_group("Rand_1","Rect_1","Box_1",100)''====rect====
DescriptionSYNTAX: Creates a random group using the specified key object and confines them in the specified container object.rect({{ArgTypeReal}} x)
====strip_sweepEXAMPLE: ''rect({{ArgTypeString}} object, {{ArgTypeAny}} width0.1)====''
''ExampleDESCRIPTION: strip_sweep("Curve_1",Computes and returns the rectangular window function: 1 if x<0.5)'', 0 elsewhere.
Description: Creates a strip version of a given curve object.====rect_gap_src====
====pipe_sweepSYNTAX: rect_gap_src({{ArgTypeString}} objectlabel, {{ArgTypeAny}} radiusrect_object, {{ArgTypeAny}} offset, {{ArgTypeAny}} polarity[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance])====
EXAMPLE: ''Example: pipe_sweeprect_gap_src("Curve_1GAP_1",5"Rect_1",0,0)''
DescriptionDESCRIPTION: Creates a pipe version of a given curve objectstrip gap circuit source in [[EM.Picasso]] or [[EM.Libera]]. If the strip gap source 'label' already exists, its properties are modified.
====rail_sweep({{ArgTypeString}} rail_object, {{ArgTypeString}} sweep_object)rect_strip====
''ExampleSYNTAX: rail_sweeprect_strip("Curve_1"{{ArgTypeString}} label,"Curve_2"{{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} side_x, {{ArgTypeAny}} side_y)''
DescriptionEXAMPLE: Rail-sweeps the specified sweep object along the specified curve object.''rect_strip("my_rectangle",0,0,0,50,20)''
== EM.Cube's Python Functions for Material DESCRIPTION: Draws a rectangle Strip object in the project workspace under the currently activated material group node, or Object Group Creation ==modifies the rectangle strip object named 'label' if it already exists.
====activate({{ArgTypeString}} group_node_label)rename====
''ExampleSYNTAX: activaterename("Color_1"{{ArgTypeString}} new_label, {{ArgTypeString}} old_label)''
DescriptionEXAMPLE: Activates a color''rename("Box_2", material or object group in the current active [[EM.Cube]] module. "Box_1")''
====color_group({{ArgTypeString}} label)====DESCRIPTION: Deletes a node name from the navigation tree. The node can be any geometric object, source, observable or material group.
''Example: color_group("Color_1")''====resistance====
DescriptionSYNTAX: Creates a color group in CubeCAD module. If the color group 'resistance({{ArgTypeString}} label' already exists, the group is activated.{{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2, {{ArgTypeAny}} x3, {{ArgTypeAny}} y3, {{ArgTypeAny}} z3, {{ArgTypeAny}} x4, {{ArgTypeAny}} y4, {{ArgTypeAny}} z4)
====pec_groupEXAMPLE: ''resistance({{ArgTypeString}} label"FI_1",0,0,-10,0,0,10,-10,-10,0,10,10,0)====''
''ExampleDESCRIPTION: pec_group("PEC_1")Creates a resistance integral observable in [[EM.Ferma]]. If the observable 'label'already exists, its properties are modified.
Description: Creates a PEC material group in the current module. If the PEC group 'label' already exists, the group is activated.====resistor====
====pec_voltage_groupSYNTAX: resistor({{ArgTypeString}} label, {{ArgTypeAny}} voltageline_object, {{ArgTypeAny}} offset, {{ArgTypeAny}} resistance)====
EXAMPLE: ''Example: pec_voltage_groupresistor("PEC_1Res_1",10"Line_1",25,50)''
DescriptionDESCRIPTION: Creates a fixed-potential PEC object group resistor in the current module[[EM.Tempo]]. If the PEC group resistor 'label' already exists, the group is activatedits properties are modified.
====pec_via_group({{ArgTypeString}} label, {{ArgTypeAny}} host_layer)revolve====
''ExampleSYNTAX: pec_via_grouprevolve("PEC_1"{{ArgTypeString}} label,10{{ArgTypeString}} object, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} uX, {{ArgTypeAny}} uY, {{ArgTypeAny}} uZ, {{ArgTypeAny}} rot_angle)''
DescriptionEXAMPLE: Creates an embedded PEC via set group in the current module. If the PEC via group 'label' already existsrevolve("Rev1", the group is activated."Line_1",0,0,0,0,0,1,360)''
====thinwire_groupDESCRIPTION: Creates or modifies a revolution object from a specified object. If modifying an existing revolution object, the pre-existing primitive object is used. ({{ArgTypeString}} labelx0,y0,z0) specifies the center of revolution, and (uX,uY, {{ArgTypeAny}} radiusuZ)====specifies the revolution axis. The revolution angle "rot_angle" is given in degrees.
''Example: thinwire_group("Thinwire_1",4)''====rosen====
DescriptionSYNTAX: Creates rosen({{ArgTypeReal}} x, {{ArgTypeReal}} y, {{ArgTypeReal}} a Thinwire material group in the current module. If the thin wire group 'label' already exists, the group is activated.{{ArgTypeReal}} b)
====pmc_groupEXAMPLE: ''rosen({{ArgTypeString}} label0.5,0,1,2)====''
''ExampleDESCRIPTION: pmc_groupComputes and returns the Rosenbrock function: (a-x)**2 + b*("PMC_1"y-x**2)''**2.
Description: Creates a PMC material group in the current module. If the PMC group 'label' already exists, the group is activated.====rotate====
====slot_groupSYNTAX: rotate({{ArgTypeString}} labelobject, {{ArgTypeAny}} rot_angle_degree, {{ArgTypeAny}} rot_axis_x, {{ArgTypeAny}} rot_axis_y, {{ArgTypeAny}} rot_axis_z)====
EXAMPLE: ''Example: slot_grouprotate("PMC_1pyramid_1",45,1,1,0)''
DescriptionDESCRIPTION: Creates Rotates an object about a slot trace group in line passing through its LCS center and aligned along the current module. If specified direction vector (rot_axis) by the slot trace group 'label' already exists, the group is activatedspecified angle.
====dielectric_group({{ArgTypeString}} label, {{ArgTypeAny}} eps, {{ArgTypeAny}} sigma, {{ArgTypeAny}} mu, {{ArgTypeAny}} rho)roughen====
''ExampleSYNTAX: dielectric_grouproughen("Dielectric_1"{{ArgTypeString}} label,"my_eps"{{ArgTypeString}} object,0{{ArgTypeAny}} rms_height,1,0{{ArgTypeAny}} correl_length)''
DescriptionEXAMPLE: Creates a dielectric material group in the current module with the specified material properties. If the dielectric group 'label' already existsroughen("Rect_1", the group is activated.1,5)''
====impenetrable_surface_group({{ArgTypeString}} label, {{ArgTypeAny}} eps, {{ArgTypeAny}} sigma)====DESCRIPTION: Roughens the surface of the specified object based on the specified RMS height and correlation length.
''Example: impenetrable_surface_group("Impenet_1",2.2,0.0001)''====run_analysis====
DescriptionSYNTAX: Creates an impenetrable surface group in [[EM.Terrano]]. If the impenetrable surface group 'label' already exists, the group is activated.run_analysis()
====penetrable_surface_group({{ArgTypeString}} label, {{ArgTypeAny}} eps, {{ArgTypeAny}} sigma, {{ArgTypeAny}} thickness)====DESCRIPTION: Runs a simulation in the current active [[EM.Cube]] computational module.
''Example: penetrable_surface_group("Penet_1",2.2,0.0001, 1)''====save_data====
DescriptionSYNTAX: Creates a penetrable surface group in [[EM.Terrano]]. If the penetrable surface group 'label' already exists, the group is activated.save_data({{ArgTypeString}} directory_name)
====penetrable_volume_groupEXAMPLE: ''save_data({{ArgTypeString}} label, {{ArgTypeAny}} eps, {{ArgTypeAny}} sigma"Simulation_Data")====''
''ExampleDESCRIPTION: penetrable_volume_group("Vol_Penet_1",2Saves [[EM.2,0Cube]]'s output simulation data files under the specified directory.0001)''
Description: Creates a penetrable volume group in [[EM.Terrano]]. If the penetrable volume group 'label' already exists, the group is activated.====sawtooth====
====terrain_groupSYNTAX: sawtooth({{ArgTypeStringArgTypeReal}} label, {{ArgTypeAny}} eps, {{ArgTypeAny}} sigmax)====
EXAMPLE: ''Example: terrain_groupsawtooth("Terrain_1",5.0,0.00015)''
DescriptionDESCRIPTION: Creates an terrain surface group in [[EM.Terrano]]. If Computes and returns the terrain surface group 'label' already existsascending periodic sawtooth function of period T = 2, the group is activatedoscillating between two values +1 and -1 and having a zero value of at x = 0.
====base_point_group({{ArgTypeString}} label)scale====
''ExampleSYNTAX: base_point_setscale("BP_Set_1"{{ArgTypeString}} object, {{ArgTypeAny}} scale_factor)''
DescriptionEXAMPLE: Creates a base point set in [[EM.Terrano]]. If the base point set group 'label' already existsscale("pyramid_1", the group is activated.2)''
====virtual_group({{ArgTypeString}} label)====DESCRIPTION: Scales an object by the specified scale factor.
''Example: virtual_group("VIR_1")''====select_module====
DescriptionSYNTAX: Creates a virtual object group in [[EM.Terrano]]. If the virtual group 'label' already exists, the group is activated.select_module({{ArgTypeString}} module_name)
====impedance_surface_groupEXAMPLE: ''select_module({{ArgTypeString}} label, {{ArgTypeAny}} z_real, {{ArgTypeAny}} z_imag"[[EM.Tempo]]")====''
''ExampleDESCRIPTION: impedance_surface_group("IMP_1",100,-100)'Selects and sets [[EM.Cube]]'s active module.
Description: Creates a impedance_surface group in [[EM.Illumina]]. If the impedance surface group 'label' already exists, the group is activated.====set_bandwidth====
====conductive_sheet_groupSYNTAX: set_bandwidth({{ArgTypeString}} label, {{ArgTypeAny}} sigma, {{ArgTypeAny}} thicknessvalue)====
EXAMPLE: ''Example: conductive_sheet_groupset_bandwidth("Cond_1",100, 0.011e9)''
DescriptionDESCRIPTION: Creates a conductive sheet group in Sets [[EM.PicassoCube]]. If the conductive sheet group 'label' already exists, the group is activateds frequency bandwidth.
====charge_group({{ArgTypeString}} label, {{ArgTypeAny}} density)set_boundary_conditions====
''ExampleSYNTAX: charge_groupset_boundary_conditions("Charge_1"{{ArgTypeString}} xn_type,-1e-5{{ArgTypeString}} xp_type, {{ArgTypeString}} yn_type, {{ArgTypeString}} yp_type, {{ArgTypeString}} zn_type, {{ArgTypeString}} zp_type)''
DescriptionEXAMPLE: Creates a volume charge source group in [[EM.Ferma]]. If the charge group 'label' already existsset_domain_offset_lambda("pml", the group is activated."pml","pml","pml","pec","pml")''
====magnet_group({{ArgTypeString}} labelDESCRIPTION: Sets [[EM.Tempo]]'s domain boundary conditions domain offset on the &plusmn;X, {{ArgTypeAny}} mu&plusmn;Y and &plusmn;Z boundary walls. The options are "pec", {{ArgTypeAny}} Mx, {{ArgTypeAny}} My, {{ArgTypeAny}} Mz)===="pmc" and "pml".
''Example: magnet_group("Magnet_1",1,0,0,100)''====set_domain_offset====
DescriptionSYNTAX: Creates a permanent magnet source group in [[EM.Ferma]]. If the magnet group 'label' already existsset_domain_offset({{ArgTypeAny}} dxn_offset, the group is activated.{{ArgTypeAny}} dxp_offset, {{ArgTypeAny}} dyn_offset, {{ArgTypeAny}} dyp_offset, {{ArgTypeAny}} dzn_offset, {{ArgTypeAny}} dzp_offset)
====volume_current_groupEXAMPLE: ''set_domain_offset({{ArgTypeString}} label20, {{ArgTypeAny}} Jx20, {{ArgTypeAny}} Jy20, {{ArgTypeAny}} Jz20,0,10)====''
''ExampleDESCRIPTION: volume_current_group("Magnet_1"Sets the domain offset values along the &plusmn;X,0,0,1e6)''&plusmn;Y and &plusmn;Z directions in project units.
Description: Creates a volume current source group in [[EM.Ferma]]. If the volume current group 'label' already exists, the group is activated.====set_domain_offset_lambda====
====wire_current_groupSYNTAX: set_domain_offset_lambda({{ArgTypeStringArgTypeAny}} dxn_offset, {{ArgTypeAny}} dxp_offset, {{ArgTypeAny}} dyn_offset, {{ArgTypeAny}} labeldyp_offset, {{ArgTypeAny}} currentdzn_offset, {{ArgTypeAny}} wire_radiusdzp_offset)====
EXAMPLE: ''Example: wire_current_groupset_domain_offset_lambda("Magnet_1"0.1,0.1,0.51,0.1,0,0.25)''
DescriptionDESCRIPTION: Creates a wire current source group in [[EM.Ferma]]. If Sets the wire current group 'label' already exists, domain offset values along the group is activated&plusmn;X, &plusmn;Y and &plusmn;Z directions in free-space wavelengths.
== EM.Cube's Python Functions for Source & Lumped Device Definition ==set_frequency====
====lumped_srcSYNTAX: set_frequency({{ArgTypeString}} label, {{ArgTypeAny}} line_object, {{ArgTypeAny}} offset, {{ArgTypeAny}} polarity[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance]value)====
EXAMPLE: ''Example: lumped_srcset_frequency("LS_1","Line_1",50,02.4e9)''
DescriptionDESCRIPTION: Creates a lumped source in Sets [[EM.TempoCube]]. If the lumped source 'label' already exists, its properties are modifieds center frequency.
====distributed_src({{ArgTypeString}} label, {{ArgTypeAny}} rect_object, {{ArgTypeAny}} field_dir, {{ArgTypeAny}} profile[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance])set_lcs_link====
''ExampleSYNTAX: distributed_srcset_lcs_link("DS_1"{{ArgTypeString}} object,"Rect_1"{{ArgTypeString}} lcs_obj,"+y"{{ArgTypeAny}} x_off,"uniform"{{ArgTypeAny}} y_off, {{ArgTypeAny}} z_off)''
DescriptionEXAMPLE: Creates a distributed source in [[EM.Tempo]]. If the distributed source 'label' already existsset_lcs_link("pyramid_1", its properties are modified."box_1",50,50,0)''
====microstrip_src({{ArgTypeString}} label, {{ArgTypeAny}} rect_object, {{ArgTypeAny}} height, {{ArgTypeAny}} edge[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance])====DESCRIPTION: Links the LCS of the first object to the LCS of the second object by the specified offset values along the three axes.
''Example: microstrip_src("MS_1","Rect_1",1.5,"+x")''====set_periodic====
DescriptionSYNTAX: Creates a microstrip port source in [[EM.Tempo]]. If the microstrip port 'label' already existsset_periodic({{ArgTypeAny}} is_periodic, its properties are modified.{{ArgTypeAny}} spacingX, {{ArgTypeAny}} spacingY)
====cpw_srcEXAMPLE: ''set_periodic({{ArgTypeString}} label1, {{ArgTypeAny}} rect_object50, {{ArgTypeAny}} spacing, {{ArgTypeAny}} edge[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance]50)====''
''ExampleDESCRIPTION: cpw_src("CPW_1","Rect_1",1Designates the physical structure as periodic and sets the periods along the X and Y directions.5,"+x")''
Description: Creates a CPW port source in [[EM.Tempo]]. If the CPW port 'label' already exists, its properties are modified.====set_rot====
====coaxial_srcSYNTAX: set_rot({{ArgTypeString}} labelobject, {{ArgTypeAny}} cylinder_objectrot_x, {{ArgTypeAny}} outer_radiusrot_y, {{ArgTypeAny}} edge[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance]rot_z)====
EXAMPLE: ''Example: coaxial_srcset_rot("COAX_1pyramid_1","Cyl_1"0,1.50,"+z"45)''
DescriptionDESCRIPTION: Creates a coaxial port source in [[EM.Tempo]]. If Sets the coaxial port 'label' already exists, its properties are modifiedthree rotation angles of an object.
====waveguide_src({{ArgTypeString}} label, {{ArgTypeAny}} box_object, {{ArgTypeAny}} offset, {{ArgTypeAny}} is_negative[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance])set_rot_link====
''ExampleSYNTAX: waveguide_srcset_rot_link("WG_1"{{ArgTypeString}} object,"Box_1"{{ArgTypeString}} lcs_obj,50{{ArgTypeAny}} x_off_deg,0{{ArgTypeAny}} y_off_deg, {{ArgTypeAny}} z_off_deg)''
DescriptionEXAMPLE: Creates a waveguide port source in [[EM.Tempo]]. If the waveguide port 'label' already existsset_rot_link("pyramid_1", its properties are modified."box_1",0,0,45)''
====wire_gap_src({{ArgTypeString}} label, {{ArgTypeAny}} line_object, {{ArgTypeAny}} DESCRIPTION: Links the rotation angles of the LCS of the first object to the rotation angles of the LCS of the second object by the specified angle offset, {{ArgTypeAny}} polarity[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance])====values in degrees along the three axes.
''Example: wire_gap_src("WIG_1","Line_1",50,0)''====set_stackup_order====
DescriptionSYNTAX: Creates a wire gap circuit source in [[EMset_stackup_order("THS", {{ArgTypeString}} label_1, {{ArgTypeString}} label_2, .Libera]]. If the wire gap source 'label' already exists, its properties are modified., {{ArgTypeString}} label_n, "BHS")
====rect_gap_srcEXAMPLE: ''background_layer({{ArgTypeString}} label"THS", {{ArgTypeAny}} rect_object"Top_Layer", {{ArgTypeAny}} offset"Mid_Layer", {{ArgTypeAny}} polarity["Bottom_Layer", {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance]"BHS")====''
DESCRIPTION: Sets the hierarchy of [[EM.Picasso]]''Example: rect_gap_src(s background layer stackup from top to bottom. The sequence should always start with "GAP_1THS",standing for the top half-space and must end in "Rect_1BHS",0,0)''standing for the bottom half-space. All the intermediate finite-thickness substrate layers must be included and listed in the right order.
Description: Creates a strip gap circuit source in [[EM.Picasso]] or [[EM.Libera]]. If the strip gap source 'label' already exists, its properties are modified.====set_units====
====probe_gap_srcSYNTAX: set_units({{ArgTypeString}} label, {{ArgTypeAny}} via_object, {{ArgTypeAny}} polarity[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance]units)====
EXAMPLE: ''Example: probe_gap_srcset_units("Probe_1","Via_1meter",0)''
DescriptionDESCRIPTION: Creates a probe gap circuit source in Sets [[EM.PicassoCube]]. If the probe gap source 'label' already exists, its properties are modifieds project length units.
====wave_port({{ArgTypeString}} label, {{ArgTypeAny}} rect_object, {{ArgTypeAny}} offset, {{ArgTypeAny}} is_negative[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance])sgn====
''ExampleSYNTAX: wave_portsgn("WP_1","Rect_1",0,0{{ArgTypeReal}} x)''
DescriptionEXAMPLE: Creates a scattering wave port source in [[EM''sgn(-1.Picasso]] or [[EM.Libera]]. If the wave port 0)'label' already exists, its properties are modified.
====short_dipole({{ArgTypeString}} labelDESCRIPTION: Computes and returns the signum function: 1 if x>0, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} length, {{ArgTypeAny}} uX, {{ArgTypeAny}} uY, {{ArgTypeAny}} uZ, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase)====-1 if x<0.
''Example: wave_port("SD_1",0,0,50,3,0,0,1,1,0)''====short_dipole====
DescriptionSYNTAX: Creates a Hertzian short dipole source. If the short dipole source 'short_dipole({{ArgTypeString}} label' already exists, its properties are modified.{{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} length, {{ArgTypeAny}} uX, {{ArgTypeAny}} uY, {{ArgTypeAny}} uZ, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase)
====planewaveEXAMPLE: ''short_dipole({{ArgTypeString}} label"SD_1", {{ArgTypeAny}} theta0, {{ArgTypeAny}} phi0, {{ArgTypeAny}} polarization50,3,0,0,1,1,0)====''
DESCRIPTION: Creates a Hertzian short dipole source. If the short dipole source 'label'Example: planewave("PW_1"already exists,180,0,"tm")''its properties are modified.
Description: Creates a plane wave source. If the plane wave source 'label' already exists, its properties are modified.====sigmoid====
====gauss_beamSYNTAX: sigmoidnc({{ArgTypeStringArgTypeReal}} labelx, {{ArgTypeAnyArgTypeReal}} theta, {{ArgTypeAny}} phi, {{ArgTypeAny}} polarization, {{ArgTypeAny}} focus_x, {{ArgTypeAny}} focus_y, {{ArgTypeAny}} focus_z, {{ArgTypeAny}} radius, {{ArgTypeAny}} p_mode, {{ArgTypeAny}} q_modea)====
EXAMPLE: ''Example: gauss_beamsigmoid("PW_1",180,0.5,"tm",0,0,0,20,0,01)''
DescriptionDESCRIPTION: Creates a Gaussian beam source in [[EM.Tempo]]. If Computes and returns the Gaussian beam source 'label' already exists, its properties are modifiedsigmoid function of slope a: 2/(1 + exp(-a*x)) - 1.
====huygens_src({{ArgTypeString}} label, {{ArgTypeAny}} filename[, {{ArgTypeAny}} set_lcs, {{ArgTypeAny}} polarization, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} x_rot, {{ArgTypeAny}} y_rot, {{ArgTypeAny}} z_rot])sinc====
''ExampleSYNTAX: huygens_srcsinc("HS_1","Huygens_1.HUY",1,100,100,0,0,0,0{{ArgTypeReal}} x)''
DescriptionEXAMPLE: Creates a Huygens source. If the Huygens source 'label' already exists, its properties are modifiedsinc(0.5)''
====transmitter_setDESCRIPTION: Computes and returns the sinc function: sin({{ArgTypeString}} label, {{ArgTypeAny}} base_point_set[, {{ArgTypeAny}} pattern_file, {{ArgTypeAny}} rot_x, {{ArgTypeAny}} rot_y, {{ArgTypeAny}} rot_zpi*x)====/(pi*x).
''Example: transmitter_set("TX_1","PT_1","DPL_STD.RAD",0,90,0)''====slice====
DescriptionSYNTAX: Creates a transmitter set in [[EM.Terrano]]. If the transmitter set 'label' already existsslice({{ArgTypeString}} object, its properties are modified.{{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} uX, {{ArgTypeAny}} uY, {{ArgTypeAny}} uZ)
====resistorEXAMPLE: ''slice({{ArgTypeString}} label"Rect_1", {{ArgTypeAny}} line_object, {{ArgTypeAny}} offset, {{ArgTypeAny}} resistance5)====''
''ExampleDESCRIPTION: resistor("Res_1","Line_1",25,50)''Slices the specified object into two parts using the specified plane given by the point coordinates and normal vector coordinates.
Description: Creates a resistor in [[EM.Tempo]]. If the resistor 'label' already exists, its properties are modified.====slot_group====
====capacitorSYNTAX: slot_group({{ArgTypeString}} label, {{ArgTypeAny}} line_object, {{ArgTypeAny}} offset, {{ArgTypeAny}} capacitance_pF)====
EXAMPLE: ''Example: capacitorslot_group("Cap_1","Line_1PMC_1",25,10)''
DescriptionDESCRIPTION: Creates a capacitor slot trace group in [[EM.Tempo]]the current module. If the capacitor slot trace group 'label' already exists, its properties are modifiedthe group is activated.
====inductor({{ArgTypeString}} label, {{ArgTypeAny}} line_object, {{ArgTypeAny}} offset, {{ArgTypeAny}} inductance_nH)solution_plane====
''ExampleSYNTAX: inductorsolution_plane("Cap_1"{{ArgTypeString}} label,"Line_1"{{ArgTypeAny}} field_sensor_label,25,10{{ArgTypeAny}} is_quasi)''
DescriptionEXAMPLE: Creates a inductor in [[EM.Tempo]]. If the inductor 'label' already existssolution_plane("FI_1", its properties are modified."FS_1",1)''
====diode({{ArgTypeString}} DESCRIPTION: Creates a 2D solution plane observable in [[EM.Ferma]]. If the observable 'label' already exists, {{ArgTypeAny}} line_object, {{ArgTypeAny}} polarity, {{ArgTypeAny}} is_fA, {{ArgTypeAny}} temperature_K, {{ArgTypeAny}} ideality_factor)====its properties are modified.
''Example: diode("Diode_1","Line_1",25,0,10,300,1)''====sphere====
DescriptionSYNTAX: Creates a diode in [[EM.Tempo]]. If the diode 'sphere({{ArgTypeString}} label' already exists, its properties are modified.{{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius[, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle])
== EM.CubeEXAMPLE: ''sphere("Sphere_1",0,0,0,10,0,180)''s Python Functions for Observable Definition ==
====port_definition_default({{ArgTypeString}} DESCRIPTION: Draws a sphere object in the project workspace under the currently activated Material Group node, or modifies the sphere named 'label)====' if it already exists. The arguments start_angle and end_angle are in degrees and specify a sweep about the sphere's azimuth axis.
''Example: port_definition_default("PD_1")''====spiral_curve====
DescriptionSYNTAX: Creates a default port definition observable. If the observable 'spiral_curve({{ArgTypeString}} label' already exists, its properties are modified.{{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius_inner, {{ArgTypeAny}} radius_outer, {{ArgTypeAny}} nturns, {{ArgTypeAny}} spiral_dir, {{ArgTypeAny}} is_dual)
====port_definition_customEXAMPLE: ''spiral_curve({{ArgTypeString}} label"Spiral _1", ({{ArgTypeString}} port_1_src_10, {{ArgTypeString}} port_1_src_20, ...0, {{ArgTypeString}} port_1_impedance)10, ({{ArgTypeString}} port_2_src_150, {{ArgTypeString}} port_2_src_25, ..., {{ArgTypeString}} port_2_impedance)0, ...0)====''
DESCRIPTION: Draws a spiral curve object in the project workspace under the currently activated material group node, or modifies the spiral curve named 'label'Example: port_definition_custom(if it already exists. If the Boolean parameter "PD_1spiral_dir"is 1,(the spiral curve will be drawn counter-clockwise. If the Boolean parameter "LS_1is_dual"is 1,"LS_2",50),,("LS_3","LS_4",50))''a dual-arm spiral curve will be drawn.
Description: Creates a custom port definition observable. If the observable 'label' already exists, its properties are modified.====spiral_strip====
====farfieldSYNTAX: spiral_strip({{ArgTypeString}} label, {{ArgTypeAny}} theta_incrx0, {{ArgTypeAny}} phi_incry0, {{ArgTypeAny}} z0, {{ArgTypeAny}} width, {{ArgTypeAny}} radius_inner, {{ArgTypeAny}} radius_outer, {{ArgTypeAny}} nturns, {{ArgTypeAny}} spiral_dir, {{ArgTypeAny}} is_dual)====
EXAMPLE: ''Example: farfieldspiral_strip("FF_1Spiral _1",10,0,0,10,50,5,0,10)''
DescriptionDESCRIPTION: Creates Draws a far-field radiation pattern observable. If spiral strip object in the observable project workspace under the currently activated material group node, or modifies the spiral strip named 'label' if it already exists. If the Boolean parameter "spiral_dir" is 1, its properties are modifiedthe spiral curve will be drawn counter-clockwise. If the Boolean parameter "is_dual" is 1, a dual-arm spiral curve will be drawn.
====rcs_bistatic({{ArgTypeString}} label, {{ArgTypeAny}} theta_incr, {{ArgTypeAny}} phi_incr)spline_fit====
''ExampleSYNTAX: rcs_bistaticspline_fit("RCS_1",1,1{{ArgTypeString}} object)''
DescriptionEXAMPLE: Creates a bistatic RCS observable. If the observable 'label' already exists, its properties are modified.spline_fit("Poly_1")''
====current_dist({{ArgTypeString}} label)====DESCRIPTION: Applies spline fit transformation on a specified polymesh, polyline or polystrip object.
''Example: current_dist("CD_1")''====spline2====
DescriptionSYNTAX: Creates a current distribution observable. If the observable 'label' already exists, its properties are modified.spline2({{ArgTypeReal}} x)
====field_sensorEXAMPLE: ''spline2({{ArgTypeString}} label, {{ArgTypeAny}} dir_coordinate, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} xSize, {{ArgTypeAny}} ySize, {{ArgTypeAny}} zSize, {{ArgTypeAny}} xSamples, {{ArgTypeAny}} ySamples, {{ArgTypeAny}} zSamples1.0)====''
''ExampleDESCRIPTION: field_sensor("FS_1","z",0,0,0,100,100,0,25,25,0)''Computes and returns the quadratic B-spline function.
Description: Creates a near-field sensor observable. If the observable 'label' already exists, its properties are modified.====spline3====
====field_sensor_gridSYNTAX: spline3({{ArgTypeStringArgTypeReal}} label, {{ArgTypeAny}} dir_coordinate, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0x)====
EXAMPLE: ''Example: field_sensor_gridspline3("FS_1","z",0,0,1.0)''
DescriptionDESCRIPTION: Creates a near-field sensor observable in [[EM.Tempo]] or [[EM.Ferma]]. If Computes and returns the observable 'label' already exists, its properties are modifiedcubic B-spline function.
====field_probe({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0)sqr_wave====
''ExampleSYNTAX: field_probesqr_wave("FS_1",0,0,50{{ArgTypeReal}} x)''
DescriptionEXAMPLE: Creates a temporal field probe observable in [[EM''sqr_wave(0.Tempo]] or [[EM.Ferma]]. If the observable 5)'label' already exists, its properties are modified.
DESCRIPTION: Computes and returns the periodic square wave function of period T ====receiver_set({{ArgTypeString}} label2, {{ArgTypeAny}} base_point_set[, {{ArgTypeAny}} pattern_file, {{ArgTypeAny}} rot_x, {{ArgTypeAny}} rot_y, {{ArgTypeAny}} rot_z)===oscillating between two values +1 and -1 and having a value of +1 at x =0.
''Example: receiver_set("TX_1","PT_1","DPL_STD.RAD",0,90,0)''====sqr2====
DescriptionSYNTAX: Creates a receiver set in [[EM.Terrano]]. If the receiver set 'label' already existssqr2({{ArgTypeReal}} x, its properties are modified.{{ArgTypeReal}} y)
====huygens_surfaceEXAMPLE: ''sqr2({{ArgTypeString}} label0, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2, {{ArgTypeAny}} xSamples, {{ArgTypeAny}} ySamples, {{ArgTypeAny}} zSamples1)====''
''ExampleDESCRIPTION: huygens_surface("HS_1",-10,-10,-10,10,10,10,40,40,40)''Computes and returns the sum of squares of x and y: x**2 + y**2.
Description: Creates a Huygens surface observable. If the observable 'label' already exists, its properties are modified.====sqr3====
====huygens_surface_gridSYNTAX: sqr2({{ArgTypeStringArgTypeReal}} labelx, {{ArgTypeAnyArgTypeReal}} x1y, {{ArgTypeAnyArgTypeReal}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2z)====
EXAMPLE: ''Example: huygens_surface_gridsqr2("HS_1",-10,-10,-10,100,101,102)''
DescriptionDESCRIPTION: Creates a Huygens surface observable in [[EM.Tempo]]. If Computes and returns the observable 'label' already existssum of squares of x, its properties are modifiedy and z: x**2 + y**2 + z**2.
====voltage_integral({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2)sqrt2====
''ExampleSYNTAX: voltage_integralsqrt2("FI_1"{{ArgTypeReal}} x,0,0,-10,0,0,10{{ArgTypeReal}} y)''
DescriptionEXAMPLE: Creates a voltage integral observable in [[EM.Ferma]]. If the observable 'label' already existssqrt2(0, its properties are modified.1)''
====current_integralDESCRIPTION: Computes and returns the radius of the 2D point ({{ArgTypeString}} labelx, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2y): sqrt(x**2 + y**2)====.
''Example: current_integral("FI_1",-10,-10,0,10,10,0)''====sqrt3====
DescriptionSYNTAX: Creates a current integral observable in [[EM.Ferma]]. If the observable 'label' already existssqrt3({{ArgTypeReal}} x, its properties are modified.{{ArgTypeReal}} y, {{ArgTypeReal}} z)
====conduction_current_integralEXAMPLE: ''sqrt3({{ArgTypeString}} label0, {{ArgTypeAny}} x11, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z22)====''
''ExampleDESCRIPTION: conduction_current_integralComputes and returns the radius of the 3D point ("FI_1"x,-10y,-10,0,10,10,0z): sqrt(x**2 + y**2 + z**2)''.
Description: Creates a conduction current integral observable in [[EM.Ferma]]. If the observable 'label' already exists, its properties are modified.====step====
====capacitanceSYNTAX: step({{ArgTypeStringArgTypeReal}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2, {{ArgTypeAny}} x3, {{ArgTypeAny}} y3, {{ArgTypeAny}} z3, {{ArgTypeAny}} x4, {{ArgTypeAny}} y4, {{ArgTypeAny}} z4x)====
EXAMPLE: ''Example: capacitancestep("FI_1",-10,-10,5,10,10,10,0,0,-10,0,1.0,10)''
DescriptionDESCRIPTION: Creates a capacitance integral observable in [[EM.Ferma]]. If Computes and returns the observable 'label' already existsunit step function: 1 if x>0, its properties are modified0 if x<0.
====inductance({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2, {{ArgTypeAny}} x3, {{ArgTypeAny}} y3, {{ArgTypeAny}} z3, {{ArgTypeAny}} x4, {{ArgTypeAny}} y4, {{ArgTypeAny}} z4)strip_sweep====
''ExampleSYNTAX: inductancestrip_sweep("FI_1"{{ArgTypeString}} object,0,0,-10,10,0,10,2.5,-2.5,0,7.5,2.5,0{{ArgTypeAny}} width)''
DescriptionEXAMPLE: Creates a inductance integral observable in [[EM.Ferma]]. If the observable 'label' already existsstrip_sweep("Curve_1", its properties are modified.5)''
====resistance({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2, {{ArgTypeAny}} x3, {{ArgTypeAny}} y3, {{ArgTypeAny}} z3, {{ArgTypeAny}} x4, {{ArgTypeAny}} y4, {{ArgTypeAny}} z4)====DESCRIPTION: Creates a strip version of a given curve object.
''Example: resistance("FI_1",0,0,-10,0,0,10,-10,-10,0,10,10,0)''====subtract====
DescriptionSYNTAX: Creates a resistance integral observable in [[EM.Ferma]]. If the observable 'subtract({{ArgTypeString}} label' already exists, its properties are modified.{{ArgTypeString}} object_1, {{ArgTypeString}} object_2)
====flux_electricEXAMPLE: ''subtract({{ArgTypeString}} label"Subtract_Object", {{ArgTypeAny}} x1"Rect_Strip1", {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2"Rect_Strip2")====''
DESCRIPTION: Creates a Boolean object named 'label'Example: flux_electric("FI_1",-10,-10,5,10,10,10)by subtracting object_2 from object_1. An error will be thrown if a Boolean object named 'label'already exists.
Description: Creates an electric flux integral observable in [[EM.Ferma]]. If the observable 'label' already exists, its properties are modified.====superquad====
====flux_magneticSYNTAX: superquad({{ArgTypeString}} label, {{ArgTypeAny}} x1x0, {{ArgTypeAny}} y1y0, {{ArgTypeAny}} z1z0, {{ArgTypeAny}} x2diam_x, {{ArgTypeAny}} y2diam_y, {{ArgTypeAny}} z2order)====
EXAMPLE: ''Example: flux_magneticsuperquad("FI_1SuperQuad_1",0,0,-100,1050,020,104)''
DescriptionDESCRIPTION: Creates Draws a magnetic flux integral observable super-quadratic curve object in [[EM.Ferma]]. If the observable project workspace under the currently activated material group node, or modifies the super-quadratic curve named 'label' if it already exists. If order = 2, its properties are modifiedthe curve reduces to an ellipse. Higher order makes the round edges sharper. An infinite order reduces the curve to a rectangle.
====energy_electric({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2)taper_strip====
''ExampleSYNTAX: energy_electrictaper_strip("FI_1"{{ArgTypeString}} label,-10{{ArgTypeAny}} x0,-10{{ArgTypeAny}} y0,-10{{ArgTypeAny}} z0,10{{ArgTypeAny}} base_width,10{{ArgTypeAny}} top_width,10{{ArgTypeAny}} length, {{ArgTypeAny}} is_expo)''
DescriptionEXAMPLE: Creates an electric energy integral observable in [[EM.Ferma]]. If the observable 'label' already existstaper_strip("ts_1", its properties are modified.0,0,0,50,100,80,1)''
====energy_magnetic({{ArgTypeString}} DESCRIPTION: Draws a taper strip object in the project workspace under the currently activated material group node, or modifies the taper strip object named 'label' if it already exists. If the Boolean parameters "is_expo" is 1, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z2)====an exponential taper will be drawn.
''Example: energy_magnetic("FI_1",-10,-10,-10,10,10,10)''====terrain_group====
DescriptionSYNTAX: Creates a magnetic energy integral observable in [[EM.Ferma]]. If the observable 'terrain_group({{ArgTypeString}} label' already exists, its properties are modified.{{ArgTypeAny}} eps, {{ArgTypeAny}} sigma)
====ohmic_lossEXAMPLE: ''terrain_group({{ArgTypeString}} label"Terrain_1", {{ArgTypeAny}} x15.0, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} z20.0001)====''
DESCRIPTION: Creates an terrain surface group in [[EM.Terrano]]. If the terrain surface group 'label'Example: ohmic_loss("FI_1"already exists,-10,-10,-10,10,10,10)''the group is activated.
Description: Creates an ohmic loss integral observable in [[EM.Ferma]]. If the observable 'label' already exists, its properties are modified.====thinwire_group====
====solution_planeSYNTAX: thinwire_group({{ArgTypeString}} label, {{ArgTypeAny}} field_sensor_label, {{ArgTypeAny}} is_quasiradius)====
EXAMPLE: ''Example: solution_planethinwire_group("FI_1","FS_1Thinwire_1",14)''
DescriptionDESCRIPTION: Creates a 2D solution plane observable Thinwire material group in [[EM.Ferma]]the current module. If the observable thin wire group 'label' already exists, its properties are modifiedthe group is activated.
== EM.Cube's Python Functions for Simulation-Related Functions & Operations ==torus====
====select_moduleSYNTAX: torus({{ArgTypeString}} module_namelabel, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} radius_major, {{ArgTypeAny}} radius_minor[, {{ArgTypeAny}} start_angle, {{ArgTypeAny}} end_angle])====
EXAMPLE: ''Example: select_moduletorus("[[EM.Tempo]]Torus_1",0,0,0,50,20)''
DescriptionDESCRIPTION: Selects and sets [[EMDraws an torus object in the project workspace under the currently activated material group node, or modifies the torus named 'label' if it already exists.Cube]]The arguments start_angle and end_angle are in degrees and specify a sweep about the torus's active moduleazimuth axis.
====set_units({{ArgTypeString}} units)translate_by====
''ExampleSYNTAX: set_unitstranslate_by("meter"{{ArgTypeString}} object, {{ArgTypeReal}} x_dist, {{ArgTypeReal}} y_dist, {{ArgTypeReal}} z_dist)''
DescriptionEXAMPLE: Sets [[EM.Cube]]'s project length units.'translate_by("MyObj",10,10,x)''
====set_frequency({{ArgTypeAny}} value)====DESCRIPTION: Translates an object by the specified distances in each direction.
''Example: set_frequency(2.4e9)''====translate_to====
DescriptionSYNTAX: Sets [[EM.Cube]]'s center frequency.translate_to({{ArgTypeString}} object, {{ArgTypeReal}} x_dest, {{ArgTypeReal}} y_dest, {{ArgTypeReal}} z_dest)
====set_bandwidthEXAMPLE: ''translate_to({{ArgTypeAny}} value"MyObj",20,20,x2)====''
''ExampleDESCRIPTION: set_bandwidth(1e9)''Translates an object to the specified destination.
Description: Sets [[EM.Cube]]'s frequency bandwidth.====transmitter_set====
====zoom_extentsSYNTAX: transmitter_set({{ArgTypeString}} label, {{ArgTypeAny}} base_point_set[, {{ArgTypeAny}} pattern_file, {{ArgTypeAny}} rot_x, {{ArgTypeAny}} rot_y, {{ArgTypeAny}} rot_z)====
DescriptionEXAMPLE: Zooms to fit the extents of the physical structure into the screen''transmitter_set("TX_1","PT_1","DPL_STD.RAD",0,90,0)''
====add_variable({{ArgTypeString}} var_nameDESCRIPTION: Creates a transmitter set in [[EM.Terrano]]. If the transmitter set 'label' already exists, {{ArgTypeAny}} value)====its properties are modified.
''Example: add_variable("MyVar",1)''====tri====
DescriptionSYNTAX: Adds a new variable to [[EM.Cube]]'s variable list.tri({{ArgTypeReal}} x)
====run_analysisEXAMPLE: ''tri(0.1)====''
DescriptionDESCRIPTION: Runs a simulationComputes and returns the triangular window function: 1-|x| if x<1, 0 elsewhere.
====set_periodic({{ArgTypeAny}} is_periodic, {{ArgTypeAny}} spacingX, {{ArgTypeAny}} spacingY) tri_wave====
''ExampleSYNTAX: set_periodictri_wave(1,50,50{{ArgTypeReal}} x)''
DescriptionEXAMPLE: Designates the physical structure as periodic and sets the periods along the X and Y directions''tri_wave(0.5)''
DESCRIPTION: Computes and returns the periodic triangular wave function of period T =2, oscillating between two values +1 and -1 and having a value of +1 at x ===plot_file({{ArgTypeString}} filename) ====0.
''Example: plot_file("D0.DAT)''====triangle_strip====
DescriptionSYNTAX: Plot the contents of a specified data file in EM.Grid.triangle_strip({{ArgTypeString}} label, {{ArgTypeAny}} x0, {{ArgTypeAny}} y0, {{ArgTypeAny}} z0, {{ArgTypeAny}} side1, {{ArgTypeAny}} side2, {{ArgTypeAny}} angle)
====meshEXAMPLE: ''triangle_strip("ts_1",0,0,0,50,100,90)====''
DescriptionDESCRIPTION: Generates and displays Draws a triangle strip object in the mesh of project workspace under the physical structurecurrently activated material group node, or modifies the triangle strip object named 'label' if it already exists.
====emtempo_mesh_settings({{ArgTypeAny}} cells_per_lambda, {{ArgTypeAny}} ratio_contour, {{ArgTypeAny}} ratio_thin, {{ArgTypeAny}} ratio_abs)union====
''ExampleSYNTAX: emtempo_mesh_settingsunion(30{{ArgTypeString}} label,0.1{{ArgTypeString}} object_1,0.1,0.02{{ArgTypeString}} object_2)''
DescriptionEXAMPLE: Sets the parameters of [[EM.Tempo]]'s adaptive mesh generator.'union("Union_Object","Rect_Strip1","Rect_Strip2")''
====emillumina_mesh_settings({{ArgTypeAny}} cells_per_lambda)====DESCRIPTION: Creates a Boolean object named 'label' by unioning object_1 and object_2. An error will be thrown if a Boolean object named 'label' already exists.
''Example: emillumina_mesh_settings(30)''====virtual_group====
DescriptionSYNTAX: Sets the parameters of [[EM.Illumina]]'s mesh generator.virtual_group({{ArgTypeString}} label)
====empicasso_mesh_settingsEXAMPLE: ''virtual_group({{ArgTypeAny}} cells_per_lambda"VIR_1")====''
''ExampleDESCRIPTION: empicasso_mesh_settings(30)Creates a virtual object group in [[EM.Terrano]]. If the virtual group 'label'already exists, the group is activated.
Description: Sets the parameters of [[EM.Picasso]]'s planar hybrid mesh generator.====voltage_integral====
====emlibera_mesh_settingsSYNTAX: voltage_integral({{ArgTypeString}} label, {{ArgTypeAny}} x1, {{ArgTypeAny}} y1, {{ArgTypeAny}} z1, {{ArgTypeAny}} x2, {{ArgTypeAny}} y2, {{ArgTypeAny}} cells_per_lambdaz2)====
EXAMPLE: ''Example: emlibera_mesh_settingsvoltage_integral(30"FI_1",0,0,-10,0,0,10)''
DescriptionDESCRIPTION: Sets the parameters of Creates a voltage integral observable in [[EM.LiberaFerma]]. If the observable 'label's mesh generatoralready exists, its properties are modified.
====emferma_mesh_settings({{ArgTypeAny}} cell_size_x, {{ArgTypeAny}} cell_size_y, {{ArgTypeAny}} cell_size_z)volume_current_group====
''ExampleSYNTAX: emferma_mesh_settingsvolume_current_group(0.5{{ArgTypeString}} label,0.5{{ArgTypeAny}} Jx,0.5{{ArgTypeAny}} Jy, {{ArgTypeAny}} Jz)''
DescriptionEXAMPLE: Sets the parameters of [[EM.Ferma]]'s fixed-cell mesh generator.'volume_current_group("Magnet_1",0,0,1e6)''
====emterrano_mesh_settings({{ArgTypeAny}} edge_lengthDESCRIPTION: Creates a volume current source group in [[EM.Ferma]]. If the volume current group 'label' already exists, {{ArgTypeAny}} angle_tol)====the group is activated.
''Example: emterrano_mesh_settings(5,10)''====wave_port====
DescriptionSYNTAX: Sets the parameters of wave_port({{ArgTypeString}} label, {{ArgTypeAny}} rect_object, {{ArgTypeAny}} offset, {{ArgTypeAny}} is_negative[[EM.Terrano], {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance]'s facet mesh generator.)
====cubecad_mesh_settingsEXAMPLE: ''wave_port({{ArgTypeAny}} edge_length"WP_1", {{ArgTypeAny}} angle_tol"Rect_1",0,0)====''
DESCRIPTION: Creates a scattering wave port source in [[EM.Picasso]] or [[EM.Libera]]. If the wave port 'label'Example: cubecad_mesh_settings(5already exists,10)''its properties are modified.
Description: Sets the parameters of CubeCAD's mesh generator.====waveguide_design====
====emtempo_engine_settingsSYNTAX: waveguide_design({{ArgTypeStringArgTypeReal}} engineer, {{ArgTypeAnyArgTypeReal}} power_threshhold, {{ArgTypeAny}} max_timestepsfreq_hertz)====
EXAMPLE: ''Example: emtempo_engine_settingswaveguide_design("single-precision",-501.0,200002e9)''
DescriptionDESCRIPTION: Sets Computes and returns the parameters minimum larger dimension (in meters) of [[EM.Tempo]]'s FDTD simulation enginethe cross section of a hollow rectangular waveguide above cutoff with a material filling of relative permittivity er at an operating frequency of freq_hertz.
====emterrano_engine_settings({{ArgTypeAny}} bounce_count, {{ArgTypeAny}} do_edge_diffraction, {{ArgTypeAny}} angular_resolution, {{ArgTypeAny}} ray_threshhold)waveguide_src====
''ExampleSYNTAX: emterrano_engine_settingswaveguide_src(5{{ArgTypeString}} label,1{{ArgTypeAny}} box_object,1{{ArgTypeAny}} offset,-100{{ArgTypeAny}} is_negative[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance])''
DescriptionEXAMPLE: Sets the parameters of [[EM.Terrano]]'s SBR simulation engine.'waveguide_src("WG_1","Box_1",50,0)''
====empicasso_engine_settings({{ArgTypeString}} matrix_solverDESCRIPTION: Creates a waveguide port source in [[EM.Tempo]]. If the waveguide port 'label' already exists, {{ArgTypeAny}} error_tol, {{ArgTypeAny}} max_iterations)====its properties are modified.
''Example: empicasso_engine_settings("bicg",1e-3,1000)''====wire_current_group====
DescriptionSYNTAX: Sets the parameters of [[EM.Picasso]]'s planar MoM simulation engine.wire_current_group({{ArgTypeString}} label, {{ArgTypeAny}} current, {{ArgTypeAny}} wire_radius)
====emillumina_engine_settingsEXAMPLE: ''wire_current_group({{ArgTypeString}} engine"Magnet_1", {{ArgTypeAny}} is_fixed_iteration1, {{ArgTypeAny}} error_tol, {{ArgTypeAny}} max_iterations0.5)====''
DESCRIPTION: Creates a wire current source group in [[EM.Ferma]]. If the wire current group 'label'Example: emillumina_engine_settings("ipo"already exists,0,1e-2,20)''the group is activated.
Description: Sets the parameters of [[EM.Illumina]]'s Physical Optics simulation engine.====wire_gap_src====
====emferma_engine_settingsSYNTAX: wire_gap_src({{ArgTypeString}} matrix_solverlabel, {{ArgTypeAny}} error_tolline_object, {{ArgTypeAny}} max_iterationsoffset, {{ArgTypeAny}} polarity[, {{ArgTypeAny}} amplitude, {{ArgTypeAny}} phase, {{ArgTypeAny}} resistance])====
EXAMPLE: ''Example: emferma_engine_settingswire_gap_src("bicg-stabWIG_1","Line_1",1e-350,1000)''
DescriptionDESCRIPTION: Sets the parameters of Creates a wire gap circuit source in [[EM.FermaLibera]]. If the wire gap source 'label's electrostatic and magnetostatic simulation enginesalready exists, its properties are modified.
====emlibera_engine_settings_wmom({{ArgTypeString}} matrix_solver, {{ArgTypeAny}} error_tol, {{ArgTypeAny}} max_iterations)zoom_extents====
''ExampleSYNTAX: emlibera_engine_settings_wmomzoom_extents("bicg",1e-3,1000)''
DescriptionDESCRIPTION: Sets Zooms to fit the parameters extents of [[EM.Libera]]'s wire MoM simulation enginesthe physical structure into the screen.
====emlibera_engine_settings_smom({{ArgTypeString}} matrix_solver, {{ArgTypeAny}} error_tol, {{ArgTypeAny}} max_iterations, {{ArgTypeAny}} ncpus, {{ArgTypeString}} formulation, {{ArgTypeAny}} alpha)====<br />
''Example: emlibera_engine_settings_smom("bicg",1e-3,1000,4,"efie",0.4)''<hr>
Description: Sets the parameters of [[EMImage:Top_icon.Liberapng|30px]]'s surface MoM simulation engines.''[[#Standard_Python_Operators | Back to the Top of the Page]]'''
<p>&nbsp;</p>[[Image:Back_icon.png|40px30px]] '''[[EM.Cube | Back to EM.Cube Main Page]]'''
28,333
edits