Changes

EM.Terrano

200 bytes added, 03:36, 22 July 2018
/* Defining a Point Transmitter Set in the Formal Way */
=== Defining a Point Transmitter Set in the Formal Way ===
Transmitters act as sources in a propagation scene. A transmitter is a point radiator with a fully polarimetric radiation pattern defined over the entire 3D space in the standard spherical coordinate system. EM.Terrano gives you three options for the radiator associated with a point transmitter: * Half-wave dipole radiator* Two orthogonally polarized isotropic radiators* User defined antenna pattern  By default, EM.Terrano assumes that your transmitter is a vertically polarized half-wave resonant dipole antenna. This antenna has an almost omni-directional radiation pattern in all azimuth directions. It also has radiation nulls along the axis of the dipole. You can override the default radiator option and select any other kind of antenna with a more complicated radiation pattern. For this purpose, you have to import a radiation pattern data file to EM.Terrano. You can model any radiating structure using [[EM.Cube]]'s other computational modules, [[EM.Tempo]], [[EM.Picasso]], [[EM.Libera]] or [[EM.Illumina]], and generate a 3D radiation pattern data file for it. The far-field radiation patter data are stored in a specially formatted file with a &quot;'''.RAD'''&quot; file extension. This file contains columns of spherical &phi; and &theta; angles as well as the real and imaginary parts of the complex-valued far-zoned electric field components '''E<sub>&theta;</sub>''' and '''E<sub>&phi;</sub>'''. The &theta;- and &phi;-components of the far-zone electric field determine the polarization of the transmitting radiator.
{{Note|By default, EM.Terrano assumes a vertical half-wave dipole radiator for your point transmitter set.}}
28,333
edits