=== Defining a Point Receiver Set in the Formal Way ===
Receivers act as observables in a propagation scene. The objective of a SBR simulation is to calculate the far-zone electric fields and the total received power at the location of a receiver. You need to define at least one receiver in the scene before you can run a SBR simulation. Similar to a transmitter, a receiver is a point radiator, too. However, unlike the transmitter case, [[EM.Terrano]] assumes that your receiver, by default, is an isotropic radiator. An isotropic radiator has a perfect omni-directional radiation pattern in all azimuth and elevation directions. An isotropic radiator doesn't physically exist in the real world. But the assumption of a default, polarization-matched, isotropic receiver is a convenient choice to generate received power coverage maps of a propagation scene. You might also define a complicated radiation pattern for your receiver set. In that case, you need to import a radiation pattern data file to [[EM.Terrano]]. Note that you can simply use the data file "DPL_STD.RAD" for that purpose, which is also used by [[EM.Terrano]] for the definition of the default vertical half-wave dipole transmitter.
{{Note|By default, [[EM.Terrano]] assumes a vertical half-wave dipole radiator for your point receiver set.}}
Similar to transmitter sets, you define a receiver set by associating it with an existing base location set in the project workspace. A typical propagation scene contains one or few transmitters but usually a large number of receivers. To generate a wireless coverage map, you need to define an array of points as your base location set.