Changes

Jump to: navigation, search

EM.Tempo

4 bytes added, 14:09, 13 June 2013
/* Periodic FDTD Simulation Types */
Figure 1: [[FDTD Module]]'s R/T Macromodel Settings dialog.
The '''Dispersion Sweep '''option of the Simulation Mode dropdown list performs a sweep of constant k<sub>l</sub> wavenumber values. This is a specialized sweep for the constant transverse wavenumber method that EM.Cube's [[FDTD Module]] uses to model periodic structures illuminated by a plane wave source. The real advantage of a dispersion sweep is that through a one-dimensional sweep of k<sub>li</sub>, you can find the reflection and transmission coefficients for all combinations of frequency f<sub>j</sub> and incident angle &theta;<sub>j</sub> such that (2&pi;/c) . f<sub>j</sub>. sin &theta;<sub>j</sub> = k<sub>li</sub>. This provides a complete picture of the dispersion behavior of your periodic structure. The sweep data can be graphed as a wavenumber-frequency intensity plot (also known as beta-k diagram) that projects the eigenvalues of the periodic structure. The horizontal axis represents the constant transverse wavenumber k<sub>l</sub> (or beta). The vertical axis represents frequency. Sometimes, the free space wave number k<sub>0</sub> = (2&pi;/c).f is used as the vertical axis, hence, the term beta-k diagram. However, EM.Cube plots frequency vs. wavenumber. Both the horizontal and vertical axes start from 0 and extend to f<sub>max</sub> and k<sub>l,max</sub>, respectively, where f<sub>max</sub> = f<sub>0</sub> + &Delta;f/2, and &Delta;f is the specified bandwidth of the project. For this sweep option you have to specify the number of wavenumber samples. Note that the dispersion sweep is run for a fixed given value of the plane wave incident angle f &phi; as specified in [[FDTD Module]]'s Plane Wave Dialog.
[[Image:FDTD144.png]]