Changes

EM.Terrano

118 bytes added, 22:38, 24 July 2015
/* Working with SBR Simulation Data */
You can adjust the mesh resolution and increase the geometric fidelity of discretization by creating more and finer triangular facets. On the other hand, you may want to reduce the mesh complexity and send to the SBR engine only a few coarse facets to model your buildings. To adjust the mesh resolution, open the Mesh Settings Dialog by clicking the '''Mesh Settings''' [[File:mesh_settings.png]] button of the Simulate Toolbar or select '''Simulate > Discretization >''' '''Mesh Settings...'''. This dialog provides a single [[parameters]]: '''Edge Mesh Cell Size''', which has a default value of 100 project units. If you are already in the Mesh View Mode and open the Mesh Settings Dialog, you can see the effect of changing the mesh cell size using the {{key|Apply}} button.
Some additional mesh [[parameters]] can be accessed by clicking the {{key|Tessellation Options}} button of the dialog. In the Tessellation Options dialog, you can change the '''Curvature Angle Tolerance''' expressed in degrees, which has a default value of 45°. This parameter can affect the shape of the mesh especially in the case of [[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|[[Solid Objects|solid objects]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]] with curved surfaces. Note that unlike [[EM.Cube]]'s other computational modules that express the default mesh density based on the wavelength, the resolution of the SBR mesh generator is expressed in project length units. The default mesh cell size of 100 units might be too large for non-flat objects. You may have to use a smaller mesh cell size along with a lower curvature angle tolerance value to capture the curvature of your curved structures adequately.
<table>
At the end of a SBR simulation, each receiver receives a number of rays. Some receivers may not receive any rays at all. You can visualize all the rays received by a certain receiver from the active transmitter of the scene. To do this, right click the '''Receivers''' item of the Navigation Tree. From the context menu select '''Show Received Rays'''. All the rays received by the currently selected receiver of the scene are displayed in the scene. The rays are identified by labels, are ordered by their power and have different colors for better visualization. You can display the rays for only one receiver at a time. The receiver set property dialog has a list of all the individual receivers belonging to that set. To display the rays received by another receiver, you have to change the '''Selected Receiver''' in the receiver set's property dialog. If you keep the mouse focus on this dropdown list and roll your mouse scroll wheel, you can scan the selected receivers and move the rays from one receiver to the next in the list. To remove the visualized rays from the scene, right click the Receivers item of the Navigation Tree again and from the context menu select '''Hide Received Rays'''.
 
[[File:prop_run5_tn.png|800px]]
 
Visualization of received rays at the location of the selected receiver.
You can also view the ray [[parameters]] by opening the property dialog of a receiver set. By default, the first receiver of the set is always selected. You can select any other receiver from the drop-down list labeled '''Selected Receiver'''. If you click the button labeled '''Show Ray Data''', a new dialog opens up with a table that contains all the received rays at the selected receiver and their [[parameters]]:
The Ray Data Dialog also shows the '''Total Received Power''' in dBm and '''Total Received Field''' in dBV/m due to all the rays received by the receiver. You can sort the rays based on their delay, field, power, etc. To do so, simply click on the grey column label in the table to sort the rays in ascending order based on the selected parameter. You can also select any ray by clicking on its '''ID''' and highlighting its row in the table. In that case, the selected rays is highlighted in the Project Workspace and all the other rays become thin (faded).
{{Note: The |All the received rays are summed up coherently in a vectorial manner at the receiverlocation.}}
<table><tr><td> [[FileImage:prop_run6_tnprop_run5_tn.png|800pxthumb|550px|Visualization of received rays at the location of the selected receiver.]]</td> Figure<td> [[Image: prop_run6_tn.png|thumb|550px|Analyzing a selected ray from the ray data dialog.]] </td></tr></table>
=== Plotting Other Simulation Results ===
28,333
edits