Changes

EM.Tempo

8 bytes removed, 13:45, 17 July 2018
/* Excitation Waveform & Frequency Domain Computations */
A sinusoidal waveform is single-tone and periodic. Its spectrum is concentrated around a single frequency, which is equal to your project's center frequency. A Gaussian pulse decays exponentially as t → ∞, but it has a lowpass frequency spectrum which is concentrated around f = 0. A modulated Gaussian pulse decays exponentially as t → ∞, and it has a bandpass frequency spectrum concentrated around your project's center frequency. For most practical problems, a modulated Gaussian pulse waveform with EM.Tempo's default parameters provides an adequate performance.
The accuracy of the FDTD simulation results depends on the right choice of temporal waveform. [[EM.Tempo]]'s default waveform choice is a modulated Gaussian pulse. At the end of an FDTD simulation, the time domain field data are transformed into the frequency domain at your specified frequency or bandwidth to produce the desired observables.
{{Note|All of [[EM.Tempo]]'s excitation sources have a default modulated Gaussian pulse waveform unless you change them.}}
[[Image:Info_icon.png|30px]] Click here to learn more about EM.Tempo's '''[[Basic_Principles_of_The_Finite_Difference_Time_Domain_Method#The_Relationship_Between_Excitation_Waveform_and_Frequency-Domain_Characteristics | Standard & Custom Waveforms and Discrete Fourier Transforms]]'''.
28,333
edits