Changes

EM.Ferma

69 bytes added, 13:42, 18 July 2018
/* The 2D Quasi-Static Simulation Mode */
EM.Ferma's electrostatic simulation engine features a 2D solution mode where your physical model is treated as a longitudinally infinite structure in the direction normal to specified "2D Solution Plane". A 2D solution plane is defined based on a "Field Sensor" definition that already exists in your project. To explore EM.Ferma's 2D mode, right-click on '''2D Solution Planes''' in the "Computational Domain" section of the navigation tree and select '''2D Domain Settings...''' from the contextual menu. In the 2D Static Domain dialog, check the checkbox labeled "Reduce the 3D Domain to a 2D Solution Plane". The first field sensor observable in the navigation tree is used for the definition of the 2D solution plane.
At the end of a 2D electrostatic analysis, you can view the electric field and potential results on the field sensor plane. It is assumed that your structure is invariant along the direction normal to the 2D solution plane. Therefore, your computed field and potential profiles must be valid at all the planes perpendicular to the specified longitudinal direction. A 2D structure of this type can be considered to represent a transmission line of infinite length. EM.Ferma also performs a quasi-static analysis of the transmission line structure, and usually provides good results at lower microwave frequencies (f < 10GHz). It computes the characteristics impedance Z<sub>0</sub> and effective permittivity &epsilon;<sub>eff</sub> of the multi-conductor TEM or quasi-TEM transmission line. The results are written to two output data files named "solution_plane_Z0.DAT" and "solution_plane_EpsEff.DAT", respectively.
<table>
</table>
You can also use EM[[Image:Info_icon.Ferma png|30px]] Click here to perform a quasi-static analysis learn more about the theory of multi'''[[Electrostatic_%26_Magnetostatic_Field_Analysis#2D_Quasi-conductor transmission line structures, which usually provides good results at lower microwave frequencies (f < 10GHz)Static_Solution_of_TEM_Transmission_Line_Structures | 2D Quasi-Static Analysis of Transmission Lines]]'''.
<table>
</tr>
</table>
 
[[EM.Ferma]] computes the characteristics impedance Z<sub>0</sub> and effective permittivity &epsilon;<sub>eff</sub> of your TEM or quasi-TEM transmission line. The results are written to two output data files named "solution_plane_Z0.DAT" and "solution_plane_EpsEff.DAT", respectively.
 
[[Image:Info_icon.png|30px]] Click here to learn more about the theory of '''[[Electrostatic_%26_Magnetostatic_Field_Analysis#2D_Quasi-Static_Solution_of_TEM_Transmission_Line_Structures | 2D Quasi-Static Analysis of Transmission Lines]]'''.
<table>
28,333
edits