<math> \mathbf{H(r)} = \frac{1}{\mu} \nabla \times \mathbf{A} (\mathbf{r}) = \frac{1}{4\pi} \int\int\int_V \mathbf{J(r^{\prime})} \times \frac{ \mathbf{r - r^{\prime}} }{ | \mathbf{r - r^{\prime}} |^3 } dv^{\prime} </math>
== The Finite Difference Technique ==
The general form of Poisson's equation for any field component ψ(<b>r</b>) can be expressed as:
<math> \nabla^2 \psi(\mathbf{r}) = \frac{\partial^2\psi}{\partial x^2} = -f(\mathbf{r}) </math>
== 2D Quasi-Static Solution of TEM Transmission Line Structures ==