=== Plotting Other Simulation Results ===
Besides "sbr_results.out", EM.Terrano writes a number of other ASCII data files to your project folder. These You can view or plot these data in [[EM.Cube]]'s Data Manager. You can open data manager by clicking the '''Data Manager''' [[File:data_manager_icon.png]] button of the '''Simulate Toolbar''' or by selecting '''Menu > Simulate > Data Manager''' from the menu bar or by right-clicking on the '''Data Manager''' item of the navigation tree and selecting '''Open Data Manager...''' from the contextual menu or by using the keyboard shortcut {{key|Ctrl+D}}. Â The available data files in the "2D Data Files" tab of Data Manger include:
* '''Path Loss''': The channel path loss is defined as PL = P<sub>r</sub> - EIRP. The path loss data are stored in a file called "SBR_receiver_set_name_PATHLOSS.DAT" as a function of the receiver index. The path loss data make sense only if your receiver set has the default isotropic radiator.
* '''Power Delay Profile''': The delays of the individual rays received by the selected receiver with respect to the transmitter are expressed in ns and tabulated together with the power of each ray in the file "SBR_receiver_set_name_DELAY.DAT". You can plot these data from the Data Manager as a bar chart called the power delay profile. The bars indeed correspond to the difference between the ray power is subtracted in dBm and the minimum power threshold level in dBm, which makes them a positive quantity. * '''Angles of Arrival''': These are the Theta and Phi angles of the individual rays received by the selected receiver and saved to the files "SBR_receiver_set_name_ThetaARRIVAL.ANG" and "SBR_receiver_set_name_PhiARRIVAL.ANG". You can plot them in the Data Manager in polar stem charts.
Besides visualizing the coverage map and received rays in the [[EM.Cube|EM.CUBE]]'s [[Propagation Module]], you can also plot the '''Path Loss''' of all the receivers belonging to a receiver set as well as the '''Power Delay Profile''' of individual receivers. To plot these data, go the '''Observables''' section of the Navigation Tree and right click on the '''Receivers''' item. From the context menu, select '''Plot Path Loss''' or '''Plot Power Delay Profile''', respectively. The path loss data between the active transmitter and all the receivers belonging to a receiver set are plotted on a Cartesian graph. The horizontal axis of this graph represents the index of the receiver. Power Delay Profile is a bar chart that plots the power of individual rays received by the currently selected receiver versus their time delay. If there is a line of sight (LOS) between a transmitter and receiver, the LOS ray will have the smallest delay and therefore will appear first in the bar chart. Sometimes you may have several rays arriving at a receiver at the same time, i.e. all with the same delay, but with different power level. These will appear as stacked bars in the chart.
Â
You can also plot the path loss and power delay profile graphs and many others from [[EM.Cube|EM.CUBE]]'s data manager. You can open data manager by clicking the '''Data Manager''' [[File:data_manager_icon.png]] button of the '''Compute Toolbar''' or by selecting '''Compute [[File:larrow_tn.png]] Data Manager''' from the menu bar or by right clicking on the '''Data Manager''' item of the Navigation Tree and selecting Open Data Manager... from the contextual menu or by using the keyboard shortcut '''Ctrl+D'''. In the Data manager Dialog, you will see a list of all the data files available for plotting. These include the theta and phi angles of arrival and departure of the selected receiver. You can select any data file by clicking and highlighting its '''ID''' in the table and then clicking the '''Plot''' button.
[[Image:MORE.png|40px]] Click here to learn more about working with data filed and plotting graphs in [[EM.Cube]]'s '''[[Data_Visualization_and_Processing#Working_with_Data_Files| Data Manager]]'''.