<table>
<tr>
<td>[[image:Cube-icon.png | link=Getting_Started_with_EM.Cube]] [[image:cad-ico.png | link=Building_Geometrical_Constructions_in_CubeCAD]] [[image:fdtd-ico.png | link=EM.Tempo]] [[image:prop-ico.png | link=EM.Terrano]] [[image:static-ico.png | link=EM.Ferma]] [[image:planar-ico.png | link=EM.Picasso]] [[image:metal-ico.png | link=EM.Libera]] [[image:po-ico.png | link=EM.Illumina]]</td>
<tr>
</table>
[[Image:Back_icon.png|30px]] '''[[EM.Cube | Back to EM.Cube Main Page]]'''
<br />
Â
== Box Tool ==
</table>
== Cylinder Circle Strip Tool ==
ICON: [[File:cylinder_tool_tncirclestrip_tool_tn.png]]
MENU: '''Object Objects → Solid Surfaces → CylinderCircle Strip'''
TO DRAW A CYLINDERCIRCLE STRIP:
# Activate the '''Cylinder Circle Strip Tool'''.# Left-click to establish define the center of the bottom base.origin# Drag the mouse away from the origin to create establish the desired base radius. Left-click a second time to establish the cylinder's base.# Drag the mouse up and away from the active work plane to establish the cylinder's height. Left-click a third time to complete the cylindercircle strip.
PYTHON COMMAND: cylindercirc_strip(label,x0,y0,z0,radiusouter_radius,heightinner_radius[,start_angle,end_angle,cap_top,cap_bottom])
CYLINDER CIRCLE STRIP PARAMETERS
{| class="wikitable"
|-
| local rotation about Z-axis
|-
! scope="row" | base_radiusouter_radius
| real numeric
| project units
| -
| -circle's outer radius
|-
! scope="row" | heightinner_radius
| real numeric
| project units
| - 0 | -inner radius creating a ring object
|-
! scope="row" | start_angle
| real numeric
| degrees
| 0
| start azimuth angle
|-
| real numeric
| degrees
| 360
| end azimuth angle
|-
! scope="row" | cap_top
| Boolean
| -
| TRUE
| places a cap at top
|-
! scope="row" | cap_bottom
| Boolean
| -
| TRUE
| places a cap at bottom base
|}
<tr>
<td>
[[Image:cad_solid2cad_surf2.png|thumb|left|480px|The property dialog of the cylinder circle strip object.]]
</td>
</tr>
<tr>
<td>
[[Image:resize_cylinder_newresize_circular_strip_new.png|thumb|left|550px|The geometry of the cylinder circle strip objectwith zero inner radius.]]
</td>
</tr>
<tr>
<td>
[[Image:02b_cylinder_tn_newCad_surf2_2nd.png|thumb|left|480px|The property dialog of the circle strip object with a nonzero inner radius.]] </td></tr><tr><td> [[Image:09b_circle_strip_tn_newA.png|thumb|left|550px|A cylinder The geometry of the circle strip object with a nonzero inner radius.]] </td></tr><tr><td> [[Image:Cad_surf2_3rd.png|thumb|left|480px|The property dialog of the circle strip object with nonzero start and end angles.]] </td></tr><tr><td> [[Image:09b_circle_strip_tn_newB.png|thumb|left|550px|A circle strip with nonzero start and end angleangles.]]
</td>
</tr>
</table>
== Cone Circle Tool ==
ICON: [[File:cone_tool_tncircle_tool_tn.png]]
MENU: '''Object → Solid Curve → ConeCircle'''
TO DRAW A CONECIRCLE:
# Activate the '''Cone Circle Tool'''.# Left-click at the desired location on the active grid to establish the cone's base plane origin.# Drag your mouse away from the origin to define set the base plane's desired radius. Left-click a second time to define the base plane.# Drag the mouse away from the base plane to establish the height. Left-click a third second time to complete the conecircle.
PYTHON COMMAND: conecircle(label,x0,y0,z0,base_radius,height[,top_radiusradius,start_angle,end_angle,cap_top,cap_bottom])
CONE CIRCLE PARAMETERS
{| class="wikitable"
|-
| local rotation about Z-axis
|-
! scope="row" | base_radius| real numeric| project units | - | -|-|-! scope="row" | top_radius| real numeric| project units | 0 | -|-! scope="row" | heightradius
| real numeric
| project units
| real numeric
| degrees
| 0
| start azimuth angle
|-
| real numeric
| degrees
| 360
| end azimuth angle
|-
! scope="row" | cap_top
| Boolean
| -
| TRUE
| places a cap at top
|-
! scope="row" | cap_bottom
| Boolean
| -
| TRUE
| places a cap at bottom base
|}
<tr>
<td>
[[Image:cad_solid3cad_curve2.png|thumb|left|480px|The property dialog of the cone circle object.]]
</td>
</tr>
<tr>
<td>
[[Image:resize_cone_newresize_circle_new.png|thumb|left|550px|The geometry of the cone circle object.]]
</td>
</tr>
</table>
<table>
<tr>
<td>
[[Image:03b_cone_tn_new21_circle_tn_newA.png|thumb|left|550px|The local coordinate system (LCS) of the circle object.]] </td></tr><tr><td> [[Image:Cad_curve2_2nd.png|thumb|left|480px|The property dialog of the circle object with nonzero start and end angles.]] </td></tr><tr><td> [[Image:21_circle_tn_newB.png|thumb|left|550px|A cone circle with a nonzero top radiusstart and end angles.]]
</td>
</tr>
</table>
== Pyramid Cone Tool ==
ICON: [[File:pyramid_tool_tncone_tool_tn.png]]
MENU: '''Object → Solid → PyramidCone'''
TO DRAW A PYRAMIDCONE:
# Activate the '''Pyramid Cone Tool'''.# Left-click to establish the first point of the rectangular cone's base planeorigin.# Define Drag away from the desired area of origin to define the base plane by dragging the mouse away from the first point's radius. Left-click a second time to establish define the base plane.# Drag the mouse away from the base plane to establish the desired height. Left-click a third time to complete the pyramidcone.
PYTHON COMMAND: pyramidcone(label,x0,y0,z0,base_x,base_ybase_radius,height[,top_xtop_radius,start_angle,top_yend_angle,cap_top,cap_bottom])
PYRAMID CONE PARAMETERS
{| class="wikitable"
|-
| local rotation about Z-axis
|-
! scope="row" | base_size_Xbase_radius
| real numeric
| project units
| -
|-
! scope="row" | base_size_Y
| real numeric
| project units
| -
| -
|-
! scope="row" | top_size_X| real numeric| project units | 0 | -|-! scope="row" | top_size_Ytop_radius
| real numeric
| project units
| -
|-
! scope="row" | top_offset_Xstart_angle
| real numeric
| project units degrees
| 0
| -start azimuth angle
|-
! scope="row" | top_offset_Yend_angle
| real numeric
| project units degrees| 0 360 | -|-! scope="row" | fix_center_X| Boolean| -| TRUE | fixes X-coordinate of base|-! scope="row" | fix_center_Y| Boolean| -| TRUE | fixes Y-coordinate of baseend azimuth angle
|-
! scope="row" | cap_top
<tr>
<td>
[[Image:cad_solid4cad_solid3.png|thumb|left|480px|The property dialog of the pyramid cone object.]]
</td>
</tr>
<tr>
<td>
[[Image:resize_pyramid_newresize_cone_new.png|thumb|left|550px|The geometry of the pyramid cone object.]]
</td>
</tr>
<tr>
<td>
[[Image:04b_pyramid_tn_newACad_solid3_2nd.png|thumb|left|550px480px|A pyramid The property dialog of the cone object with a nonzero top dimensionsradius.]]
</td>
</tr>
</table>
<table>
<tr>
<tr>
<td>
[[Image:04b_pyramid_tn_newB03b_cone_tn_new.png|thumb|left|550px|A pyramid cone with a nonzero top offset valuesradius.]]
</td>
</tr>
</table>
== Sphere Tool Curve Generator ==
ICON: [[File:sphere_tool_tncurve_gen_tool_tn.png]]
MENU: '''Object → Solid Curve → SphereCurve Generator'''
TO DRAW A SPHEREPARAMETRIC CURVE:
# Activate the '''Sphere Curve Generator Tool'''.# Left-click to establish the origin pointlocation of the new parametric curve. Drag A default oblique line appears in the mouse outward from project workspace.# The curve generator dialog opens up on the origin to establish lower left corner of the radiusscreen. You have three options for '''Model''' type: '''Cartesian Curve''', '''Polar Curve''' or '''Parametric Curve'''. The default option is the Cartesian curve.# Left-click In the case of a second time Cartesian curve, you also have three options for '''Orientation''': XY, YZ or ZX planes. With the XY plane orientation, the Cartesian curve is expressed as y = f(x). With the YZ plane orientation, the Cartesian curve is expressed as z = f(y). With the ZX plane orientation, the Cartesian curve is expressed as x = f(z). # Enter the start, stop and step values for the range of the coordinate variable in the selected orientation plane.# Enter a mathematical expression in terms of the coordinate variable in the selected orientation plane for the definition of the Cartesian curve.# In the case of a polar curve, the radial coordinate is expressed as a function of the polar angle t: r = r(t). # In the case of a parametric curve, the x, y and z coordinates are expressed as three separate functions of the parameter t: x(t), y(t), z(t). # For a polar or parametric curve, enter the start, stop and step values for the range of the variable t.# Enter the defining expression(s) for the curve. # Make sure to click the <b>OK</b> button of the dialog to complete the spherecurve construction.
NOTES, SPECIAL CASES OR EXCEPTIONS: You can always edit and modify a parametric curve after you first create it in the curve generator. The property dialog of a parametric curve object is indeed the curve generator itself, where you can change the parameter values or the defining expression(s). All the curves created by the curve generator are of the polyline type.
PYTHON COMMAND: sphere(label,x0,y0,z0,radius[,start_angle,end_angle])
PYTHON COMMAND: param_curve(label,x0,y0,z0,model,orientation,start,stop,step,function[,y(t),z(t)])
SPHERE PARAMETRIC CURVE PARAMETERS
{| class="wikitable"
|-
| project units
| -
| X-coordinates of base the surface
|-
! scope="row" | LCS_Y
| project units
| -
| Y-coordinates of base the surface
|-
! scope="row" | LCS_Z
| project units
| -
| Z-coordinates of base the surface
|-
! scope="row" | rot_X
| real numeric
| degrees
| - 0
| local rotation about X-axis
|-
| real numeric
| degrees
| - 0
| local rotation about Y-axis
|-
| real numeric
| degrees
| - 0
| local rotation about Z-axis
|-
! scope="row" | radiusmodel| real numericthree options: Cartesian, polar or parametric| project units - | - Cartesian| -the curve definition type
|-
! scope="row" | start_angleorientation| three options: XY, YZ or ZX| - | XY | the coordinate plane in which the Cartesian curve is drawn (only for Cartesian curve)|-! scope="row" | start
| real numeric
| degreesproject units
| 0
| start azimuth anglevalue of range of the coordinate variable
|-
! scope="row" | end_anglestop
| real numeric
| degreesproject units | 360 10 | end azimuth anglestop value of range of the coordinate variable|-! scope="row" | step| integer numeric| project units | 1| step value of range of the coordinate variable|-! scope="row" | function| text string| -| x| mathematical expression in the local coordinate variable |-! scope="row" | y(t)| text string| -| t| mathematical expression in the variable t (only for parametric curve)|-! scope="row" | z(t)| text string| -| t| mathematical expression in the variable t (only for parametric curve)
|}
<tr>
<td>
[[Image:cad_solid5cad_curve10.png|thumb|left|480px|The property curve generator dialog of showing the sphere objectdefault Cartesian curve.]]
</td>
</tr>
<tr>
<td>
[[Image:resize_sphere_newCad curve11_new.png|thumb|left|550px|The geometry of default Cartesian curve created by the sphere objectcurve generator.]]
</td>
</tr>
</table>
<table>
<tr>
<td>
[[Image:05b_sphere_tn_newCad curve12_new.png|thumb|left|550px480px|A sphere with The curve generator dialog showing a nonzero end anglesuper-quadratic helical parametric curve.]] </td></tr></table><table><tr><td> [[Image:Cad curve13_new.png|thumb|left|550px|The super-quadratic helical parametric curve created by the curve generator.]]
</td>
</tr>
</table>
== Ellipsoid Cylinder Tool ==
ICON: [[File:ellipsoid_tool_tncylinder_tool_tn.png]]
MENU: '''Object → Solid → EllipsoidCylinder'''
TO DRAW AN ELLIPSOIDA CYLINDER:
# Activate the '''Ellipsoid Cylinder Tool'''.# Left-click to define establish the first X-radius anchor point.# Drag center of the mouse to the desired length. left-click a second time to define the ending X-radius anchor pointbottom base.# Drag the mouse away from the X radius origin to establish create the desired Y-base radius. Left-click a third second time to define establish the Y radiuscylinder's base.# Drag the mouse up and away from the active work plane to define establish the Z radiuscylinder's height. Left-click a fourth third time to complete the ellipsoidcylinder.
PYTHON COMMAND: ellipsoidcylinder(label,x0,y0,z0,radius_xradius,radius_y,radius_zheight[,start_angle,end_angle,cap_top,cap_bottom])
ELLIPSOID CYLINDER PARAMETERS
{| class="wikitable"
|-
| local rotation about Z-axis
|-
! scope="row" | radius_Xbase_radius
| real numeric
| project units
| -
|-
! scope="row" | radius_Y| real numeric| project units | - | -|-! scope="row" | radius_Zheight
| real numeric
| project units
| 360
| end azimuth angle
|-
! scope="row" | cap_top
| Boolean
| -
| TRUE
| places a cap at top
|-
! scope="row" | cap_bottom
| Boolean
| -
| TRUE
| places a cap at bottom base
|}
<tr>
<td>
[[Image:cad_solid6cad_solid2.png|thumb|left|480px|The property dialog of the ellipsoid cylinder object.]]
</td>
</tr>
</table>
<table>
<tr>
<td>
[[Image:resize_ellipsoid_newresize_cylinder_new.png|thumb|left|550px|The geometry of the ellipsoid cylinder object.]]
</td>
</tr>
<tr>
<td>
[[Image:06b_ellipsoid_tn_newCad_solid2_2nd.png|thumb|left|480px|The property dialog of the cylinder object with a nonzero end angle.]] </td></tr><tr><td> [[Image:02b_cylinder_tn_new.png|thumb|left|550px|An ellipsoid A cylinder with a nonzero end angle.]]
</td>
</tr>
</table>
== Torus Ellipse Strip Tool ==
ICON: [[File:torus_tool_tnellipsestrip_tool_tn.png]]
MENU: '''Object → Solid Surface → TorusEllipse Strip'''
TO DRAW A TORUSAN ELLIPSE STRIP:
# Activate the '''Torus Ellipse Strip Tool'''.# Left-click to define establish the center pointX/Y axis origin.# Drag the mouse away from the origin and left-click a second time to establish the Major Radius of the torus.# Drag the mouse away from the Major Radius construction path to establish the Minor Radiusdesired location. Left-click a third second time to complete create the torusellipse.
PYTHON COMMAND: torusellipse_strip(label,x0,y0,z0,radius_majorradius_x,radius_minorradius_y[,start_angle,end_angle])
TORUS ELLIPSE STRIP PARAMETERS
{| class="wikitable"
|-
| local rotation about Z-axis
|-
! scope="row" | major_radiusradius_X
| real numeric
| project units
| -
| radius along X-axis
|-
! scope="row" | minor_radiusradius_Y
| real numeric
| project units
| -
| radius along Y-axis
|-
! scope="row" | start_angle
| real numeric
| degrees
| 0
| start azimuth angle
|-
| real numeric
| degrees
| 360
| end azimuth angle
|-
! scope="row" | fix_center_X
| Boolean
| -
| TRUE
| fixes X-coordinate of base
|-
! scope="row" | fix_center_Y
| Boolean
| -
| TRUE
| fixes Y-coordinate of base
|}
<tr>
<td>
[[Image:cad_solid4toruscad_surf4.png|thumb|left|480px|The property dialog of the torus ellipse strip object.]]
</td>
</tr>
<tr>
<td>
[[Image:resize_torus_newresize_elliptical_strip_new.png|thumb|left|550px|The geometry of the torus ellipse strip object.]] </td></tr><tr><td> [[Image:07b_torus_tn_new.png|thumb|left|550px|A torus with a nonzero end angle.]]
</td>
</tr>
</table>
== Solid Generator Ellipsoid Tool ==
ICON: [[File:solid_gen_tool_tnellipsoid_tool_tn.png]]
MENU: '''Object → Solid → Solid GeneratorEllipsoid'''
TO DRAW A PLATONIC SOLIDAN ELLIPSOID:
# Activate the '''Solid Generator Ellipsoid Tool'''.# In Left-click to define the solid generator dialog, select one of the five platonic solid types '''Tetrahedron''', '''Hexahedron''' '''Octahedron''', '''Dodecahedron''', or '''Icosahedron'''first X-radius anchor point.# The dialog shows Drag the number of faces, edges, nodes and mouse to the side desired length of . left-click a second time to define the standard platonic solid of the selected typeending X-radius anchor point. # Specify Drag the value of mouse away from the '''Scale''' parameter based on the displayed '''Side Length'''.# Before you create the solid and add its name X radius to establish the navigation tree, you have an opportunity to preview itdesired Y-radius. To do so, Left-click a third time to define the {{key|Preview}} button of the dialogY radius. A yellow ghost of # Drag the solid appears in mouse away from the project workspace. You can change active plane to define the scale and resize the solidZ radius. Once you are satisfied with the generated solid, Left-click a fourth time to complete the {{key|Create}} button to finalize its creationellipsoid.
NOTES, SPECIAL CASES OR EXCEPTIONS: All the solid objects generated by the solid generator are of polymesh type.
PYTHON COMMAND: ellipsoid(label,x0,y0,z0,radius_x,radius_y,radius_z[,start_angle,end_angle])
PYTHON COMMAND: None
 PLATONIC SOLID PROPERTIES{| class="wikitable"|-! scope="col"| Solid Type! scope="col"| No. of Faces! scope="col"| No. of Edges! scope="col"| No. of Vertices! scope="col"| Side Length! scope="col"| Geometry|-! scope="row" | Tetrahedron| 4| 6 | 4 | 2 | [[Image:CAD MAN23.png|thumb|left|150px]]|-! scope="row" | Tessellated Hexahedron| 12| 12 | 8 | 2 | [[Image:CAD MAN24.png|thumb|left|150px]]|-! scope="row" | Octahedron| 8| 12 | 6 | √2 | [[Image:CAD MAN25.png|thumb|left|150px]]|-! scope="row" | Tessellated Dodecahedron| 36| 30 | 20 | √5 - 1 | [[Image:CAD MAN26.png|thumb|left|150px]]|-! scope="row" | Icosahedron| 20| 30 | 12 | 2 | [[Image:CAD MAN27.png|thumb|left|150px]] |} <table><tr><td> [[Image:cad_solid8.png|thumb|left|480px|The solid generator dialog.]] </td></tr></table> == Rectangle Strip Tool == ICON: [[File:rectstrip_tool_tn.png]]  MENU: '''Object → Surface → Rectangle Strip''' TO DRAW A RECTANGLE STRIP: # Activate the '''Rectangle Strip Tool'''. # Left-click to establish the X/Y axial triangulation point.# Drag the mouse outward from this point to define the desired area of the rectangle strip. Left-click a second time to complete the shape.  PYTHON COMMAND: rect_strip(label,x0,y0,z0,side_x,side_y)  RECTANGLE STRIP ELLIPSOID PARAMETERS
{| class="wikitable"
|-
| local rotation about Z-axis
|-
! scope="row" | side_Xradius_X
| real numeric
| project units
| -
| dimension along X-axis
|-
! scope="row" | side_Yradius_Y
| real numeric
| project units
| -
| dimension along Y-axis
|-
! scope="row" | fix_center_X
| Boolean
| -
| TRUE
| fixes X-coordinate of base
|-
! scope="row" | fix_center_Yradius_Z| Booleanreal numeric| project units | -
| -
| TRUE
| fixes Y-coordinate of base
|-
! scope="row" | rect_loopstart_angle| Booleanreal numeric| -degrees| FALSE0 | if TRUE, creates a rectangular loopstart azimuth angle
|-
! scope="row" | loop_widthend_angle
| real numeric
| project units degrees| - 360 | -end azimuth angle
|}
<tr>
<td>
[[Image:cad_surf1cad_solid6.png|thumb|left|480px|The property dialog of the rectangle strip ellipsoid object.]]
</td>
</tr>
</table>
<table>
<tr>
<td>
[[Image:resize_rectangular_strip_newresize_ellipsoid_new.png|thumb|left|550px|The geometry of the rectangle strip ellipsoid object.]]
</td>
</tr>
<tr>
<td>
[[Image:resize_rectangular_strip_new1cad_solid6.png|thumb|left|550px480px|A rectangular loop The property dialog of the ellipsoid object with a nonzero loop widthstart angle.]]
</td>
</tr>
</table>
<table>
<tr>
<td>
[[Image:lock_base_tn06b_ellipsoid_tn_new.jpgpng|thumb|left|550px|Locking the base of An ellipsoid with a rectangle strip.]] </td></tr></table><table><tr><td> [[Image:draw_modes_tn.jpg|thumb|left|550px|The different drawing modes of rectangle stripnonzero start angle.]]
</td>
</tr>
</table>
== Circle Strip Fractal Tree Tool ==
ICON: [[File:circlestrip_tool_tnfractal_tool_tn.png]]
MENU: '''Objects Object → Surfaces Special → Circle StripFractal Tree'''
TO DRAW A CIRCLE STRIPFRACTAL TREE:
# Activate the '''Circle Strip Fractal Tree Tool'''. # Left-click to define establish the originlocation of the fractal tree. A default horizontal fractal tree appears in the project workspace.# Drag The fractal dialog opens up on the mouse away from lower right corner of the origin to establish screen. You have two options: fractal tree with linear or cylindrical branches. You can also set the desired radiusnumber of fractal levels. Left-# Make sure to click a second time the <b>OK</b> button of the dialog to complete the circle stripfractal construction.
NOTES, SPECIAL CASES OR EXCEPTIONS: The parameter '''Gen. Factor''' determines how many new next-level branches are generated at the end of each branch. '''Separation Angle''' sets the angle between each pair of branches at each node. The '''Prune Factor''' determines what percentage of branches are removed randomly at each node. With a default zero prune factor, all the branches are kept. The parameter '''Thickness''' represents the diameter of the main branch in the case of a cylinder key object. The parameter '''Thickness Factor''' determines the tapering of each cylindrical branch from its start point to the end point. A zero thickness factor means no branch tapering.
PYTHON COMMAND: circ_strip(labelYou can change the coordinates of the LCS of a fractal tree or its rotation angle. From the fractal dialog,x0,y0,z0,outer_radius,inner_radius[,start_angle,end_angle])you can also access the properties of the key object by clicking the {{key|Edit Primitive...}} button of this dialog.
{{Note|Fractal tree operations are usually very time consuming especially when the key object type is a cylinder. Please be patient while [[EM.Cube]] is running fractal tree creation or edit operations.}}
CIRCLE STRIP PYTHON COMMAND: fractal_tree(label,x0,y0,z0,key_type,key_size,n_level,sep_angle,n_gen,prune_factor,thickness,thick_factor)Â Â FRACTAL TREE PARAMETERS
{| class="wikitable"
|-
| local rotation about Z-axis
|-
! scope="row" | outer_radiuskey_object_type| real numericLine or Cylinder| project units - | - Line | circle's outer radius-
|-
! scope="row" | inner_radiuslevel_count| real integer numeric| project units -| 0 3| inner radius creating a ring objectnumber of fractal levels
|-
! scope="row" | start_angleseparation_angle
| real numeric
| degrees
| 30
| angle between two adjacent branches
|-
! scope="row" | generation_factor
| integer numeric
| -
| 3
| Number of new branches generated at each node
|-
! scope="row" | prune_factor
| real numeric
| -
| 0
| start azimuth angleA number between 0 and 1 representing the percentage of branches randomly deleted
|-
! scope="row" | end_anglethickness
| real numeric
| degreesproject units| 3601| end azimuth anglediameter of branches |-! scope="row" | thickness_factor| real numeric| -| 0.2| A number between 0 and 1 representing the percentage of tapering of each cylindrical branch upward
|}
<tr>
<td>
[[Image:cad_surf2CAD MAN20.png|thumb|left|480px|The property fractal tree dialog of the circle strip object.]]
</td>
</tr>
<tr>
<td>
[[Image:resize_circular_strip_newCAD MAN21.png|thumb|left|550px|The geometry of the circle strip object a fractal tree with zero inner radiusa line key object.]]
</td>
</tr>
</table>
<table>
<tr>
<td>
[[Image:09b_circle_strip_tn_newACAD MAN22.png|thumb|left|550px|The geometry of the circle strip object with a nonzero inner radius.]] </td></tr><tr><td> [[Image:09b_circle_strip_tn_newB.png|thumb|left|550px|A circle strip fractal tree with a nonzero start anglecylinder key object.]]
</td>
</tr>
</table>
== Radial Strip Helix Tool ==
ICON: [[File:radialstrip_tool_tnhelix_tool_tn.png]]
MENU: '''Object → Surface Curve → Radial StripHelix'''
TO DRAW A RADIAL STRIPHELIX:
# Activate the '''Radial Strip Helix Tool'''. # Left-click to establish the origin pointof the inner-radius.# Drag the mouse away from the origin and leftto expand the inner radius, (toward it to contract the inner radius).# Left-click a second time to establish set the inner radius and to establish the anchor point from which you will set the first leg height of the radial striphelix.# Drag your cursor "up" and away from the mouse second anchor point to increase the desired location to define the angle height of the radial striphelix. # Left-click a third time to complete the radial striphelix.
NOTES, SPECIAL CASES OR EXCEPTIONS: You can define a helix curve with different values for '''Inner Radius''' and '''Outer Radius''', which make the curve expanding or shrinking. The '''Height''' parameter establishes the elevation of the end point of the helix with respect to start point.
PYTHON COMMAND: radial_strip(label,x0,y0,z0,radius,base_lenght,angle)
PYTHON COMMAND: helix(label,x0,y0,z0,radius_inner,radius_outer,height,nturns,helix_dir)
RADIAL STRIP HELIX PARAMETERS
{| class="wikitable"
|-
| local rotation about Z-axis
|-
! scope="row" | radiusinner_radius
| real numeric
| project units
| - same as outer radius
| -
|-
! scope="row" | base_lengthouter_radius
| real numeric
| project units
| 0 - | A nonzero value creates a flattened base-
|-
! scope="row" | angleheight
| real numeric
| degreesproject units | -
| -
| wedge angle-! scope="row" | turns| integer numeric| project units | 2| number of spiral turns|-! scope="row" | ccw| Boolean| -| TRUE| if TRUE, creates counterclockwise right-handedness
|}
<tr>
<td>
[[Image:cad_surf3cad_curve7.png|thumb|left|480px|The property dialog of the radial strip helix curve object.]]
</td>
</tr>
<tr>
<td>
[[Image:resize_radial_strip_newresize_helix_new.png|thumb|left|550px|The geometry of the radial strip helix curve object.]]
</td>
</tr>
</table>
<table>
<tr>
<td>
[[Image:10b_radial_strip_tn_new26_helix_tn_new.png|thumb|left|550px|A radial strip The local coordinate system (LCS) of the helix curve object with a nonzero base length.]]
</td>
</tr>
</table>
== Ellipse Strip Hyperbola Tool ==
ICON: [[File:ellipsestrip_tool_tnhyperbola_tool_tn.png]]
MENU: '''Object → Surface Curve → Ellipse StripHyperbola'''
TO DRAW AN ELLIPSE STRIPA HYPERBOLA:
# Activate the '''Ellipse Strip Hyperbola Tool'''. # Left-click to establish define the X/Y axis -radius origin. Construction guides will appear to aid in the drawing process.# Drag the mouse away from the origin to establish the desired locationX-radius. Left-click a second time .# To establish the Y-radius and the hyperbola's leg length, drag the mouse to the desired location and left-click to create complete the ellipseHyperbola.
NOTES, SPECIAL CASES OR EXCEPTIONS: Checking the box labeled '''Neg. Branch''' creates the opposite branch of the hyperbola curve. Checking the box labeled '''Create Half''' bisects the hyperbola and removes its bottom half. You can revolve the resulting curve to create a hyperboloid.
PYTHON COMMAND: ellipse_strip(label,x0,y0,z0,radius_x,radius_y[,start_angle,end_angle])
PYTHON COMMAND: hyperbola(label,x0,y0,z0,diam_x,diam_y,axial_length,half_only)
ELLIPSE STRIP HYPERBOLA PARAMETERS
{| class="wikitable"
|-
| local rotation about Z-axis
|-
! scope="row" | radius_Xdiameter_X
| real numeric
| project units
| -
| radius diameter along X-axis
|-
! scope="row" | radius_Ydiameter_Y
| real numeric
| project units
| -
| radius diameter along Y-axis
|-
! scope="row" | start_angleaxial_length
| real numeric
| degreesproject units | 0- | start azimuth angle-
|-
! scope="row" | end_angle| real numeric| degrees| 360| end azimuth angle|-! scope="row" | fix_center_Xcreate_half
| Boolean
| -
| TRUE FALSE| fixes X-coordinate if TRUE, draws one half of baseone branch only
|-
! scope="row" | fix_center_Y| Booleannegative_branch
| -
| TRUE FALSE| fixes Y-coordinate of baseif TRUE, draws the negative branch only
|}
<tr>
<td>
[[Image:cad_surf4cad_curve5.png|thumb|left|480px|The property dialog of the ellipse strip hyperbola curve object.]]
</td>
</tr>
<tr>
<td>
[[Image:resize_elliptical_strip_new24a_hyperbola_tn_new.png|thumb|left|550px|The geometry of the ellipse strip hyperbola curve object.]] </td></tr></table><table><tr><td> [[Image:24b_hyperbola_tn_new.png|thumb|left|720px|Drawing a half-hyperbola or the negative branch of the hyperbola.]]
</td>
</tr>
</table>
== Triangle Strip Line Tool ==
ICON: [[File:trianglestrip_tool_tnline_tool_tn.png]]
MENU: '''Object → Surface Curve → Triangle StripLine'''
TO DRAW A TRIANGLE STRIPLINE:
# Activate the '''Triangle Strip Line Tool'''. # Left-left click anywhere on the workplane to establish begin drawing the triangles originline.# Drag away from the origin and left-click a second time to define Leg 1 of the triangle.# Drag away from leg 1, left-click a third time to define Leg 2 and complete the triangleline.
NOTES, SPECIAL CASES OR EXCEPTIONS: When the check box '''Side 1Lock Center''' establish is checked, changing the line's length of first leg of the triangleexpands or shrinks it equally from both ends. '''Side 2''' establishes To create a line perpendicular to the length of the second leg of the triangle '''Angle''' defines the opening angle of the origin vertex (the angle between leg one and leg two). Hold current work plane, hold down the {{key|ShiftAlt}} key while positioning dragging the third point of the triangle mouse to constrain establish the origin angle to 15º incrementsline's end point.
PYTHON COMMAND: triangle_stripline(label,x0,y0,z0,side1len[,side2,angledir])
TRIANGLE STRIP LINE PARAMETERS
{| class="wikitable"
|-
| local rotation about Z-axis
|-
! scope="row" | side_1length
| real numeric
| project units
| -
|-
! scope="row" | side_2fix_center| real numeric| project units | 0 Boolean
| -
|-FALSE! scope="row" | angle| real numeric| degrees| -| wedge anglefixes midpoint coordinates
|}
<tr>
<td>
[[Image:cad_surf5cad_curve1.png|thumb|left|480px|The property dialog of the triangle strip line object.]]
</td>
</tr>
<tr>
<td>
[[Image:resize_triangle_strip_newvert_line_new.png|thumb|left|550px|The geometry Drawing a vertical line object: Left click anywhere on the workplane to begin drawing the line; while still in âDraw Modeâ, press and hold down the {{key | Alt}} button of the triangle strip keyboard.]] </td></tr><tr><td> [[Image:18_Line_tn_new.png|thumb|left|550px|Drawing a horizontal line object.]]
</td>
</tr>
</table>
== Taper Strip NURBS Curve Tool ==
ICON: [[File:taperstrip_tool_tnnurbs_tool_tn.png]]
MENU: '''Object → Surface Curve → Taper StripNURBS'''
TO DRAW A TAPER STRIPNURBS CURVE:
# Activate the '''Taper Strip NURBS Curve Tool'''. # Left-click Click anywhere on the active work plane to establish the base length midpointcreate nodes.# Drag outward from this point to define the desired length and angle The contour of the base side. Left-click a NURBS Curve is rendered as soon as the second time to define the basenode is defined. A NURBS Curve must have at least two nodes.# To establish Create as many nodes as you want. You can finish the height, drag drawing either by double-clicking on the mouse away from last node or first creating the base to last node and pressing the desired locationkeyboard's {{key|Enter}} key. Left-click a third # The NURBS Curve can be closed at any time using the keyboard shortcut {{key|C}}. This connects the last drawn node to complete the Taper Stripfirst.
NOTES, SPECIAL CASES OR EXCEPTIONS: If a NURBS Curve object is originally drawn as an open curve, you can turn it into a closed one by placing a check mark in the box labeled '''Taper LengthClose Curve''' establishes . The property dialog of a NURBS Curve object lists the distance between individual nodes and their coordinates ordered by the base node ID. You can select and top sides highlight each node and change its coordinates using the {{key|Edit}} button of the trapezoiddialog. If You can also delete each node using the '''Exponential''' check box {{key|Delete}} key or insert a new node between the selected node and its next node using the {{key|Insert}} key. The new node is checked, placed at the two slanted sides of midpoint between the trapezoid are replaced by exponential curves passing through selected node and the node having the same verticesnext ID number.
PYTHON COMMAND: taper_stripnurbs_curve(label,(x0,y0,z0),base_width,top_width(x1,lengthy1,is_expoz1) ... )
TAPER <table><tr><td> [[Image:cad_curve9_new.png|thumb|left|480px|The property dialog of the NURBS curve object.]] </td></tr></table><table><tr><td> [[Image:20_Nurbs_tn_new.png|thumb|left|550px|Drawing a NURBS curve.]] </td></tr></table> == NURBS Strip Tool == ICON: [[File:nurbsstrip_tool_tn.png]]  MENU: '''Object → Surface → NURBS Strip''' TO DRAW A NURBS STRIP : # Activate the '''NURBS Strip Tool'''. # Click anywhere on the active work plane to create nodes. The contour of the NURBS strip is rendered as soon as the third node is defined. A NURBS Strip must have at least three nodes.# Create as many nodes as you want. You can finish the drawing either by double-clicking on the last node or first creating the last node and pressing the keyboard's {{key|Enter}} key.  NOTES, SPECIAL CASES OR EXCEPTIONS: The property dialog of a NURBS strip object lists the individual nodes and their coordinates ordered by the node ID. You can select and highlight each node and change its coordinates using the {{key|Edit}} button of the dialog. You can also delete each node using the {{key|Delete}} key or insert a new node between the selected node and its next node using the {{key|Insert}} key. The new node is placed at the midpoint between the selected node and the node having the next ID number.   PYTHON COMMAND: nurbs_strip(label,(x0,y0,z0),(x1,y1,z1) ... )  <table><tr><td> [[Image:cad_surf10.png|thumb|left|480px|The property dialog of the NURBS strip object.]] </td></tr></table><table><tr><td> [[Image:NURBSstripSteps.png|thumb|left|550px|Drawing a NURBS strip.]] </td></tr></table> == Parabola Tool == ICON: [[File:parabola_tool_tn.png]]  MENU: '''Object → Curve → Parabola''' TO DRAW A PARABOLA: # Activate the '''Parabola Tool'''. # Left-click to set the Focal Point.# Drag away from the focal point and left-click a second time to set the desired Offset.# Drag and left-click a third time to complete the Parabolic Curve. NOTES, SPECIAL CASES OR EXCEPTIONS: The parameters '''Axial Length''' and '''Aperture''' adjust the size of the opening of the parabola. Changing the value of either one automatically adjusts the value of the other. Checking the box labeled '''Create Half''' bisects the parabola and removes its bottom half. You can revolve the resulting half-curve to create a paraboloid.  PYTHON COMMAND: parabola(label,x0,y0,z0,focal_length,axial_length,half_only)  PARABOLA PARAMETERS
{| class="wikitable"
|-
| local rotation about Z-axis
|-
! scope="row" | base_widthfocal_length
| real numeric
| project units
| -
|-
! scope="row" | taper_lengthaxial_length
| real numeric
| project units
| -
|-
! scope="row" | top_widthaperture
| real numeric
| project units | - degrees
| -
| is determined automatically by focal and axial lengths or can be set independently
|-
! scope="row" | top_offset| real numeric| project units | 0| A zero value creates an isosceles triangle|-! scope="row" | exponentialcreate_half
| Boolean
| -
| FALSE
| creates an exponential taper transition|-! scope="row" | create-half| Boolean| -| FALSE| keeps if TRUE, draws the left half of taper strip only Â
|}
<tr>
<td>
[[Image:cad_surf6cad_curve4.png|thumb|left|480px|The property dialog of the taper strip parabola curve object.]]
</td>
</tr>
<tr>
<td>
[[Image:Resize_taper_strip_newresize_parabola_new.png|thumb|left|550px|The geometry of the taper strip parabola curve object with exponential side walls.]]
</td>
</tr>
</table>
<table>
<tr>
<td>
[[Image:14b_taper_strip_tn_new23_parabola_tn_new.png|thumb|left|550px720px|A taper strip with linear side walls and Drawing a nonzero top offsethalf-parabola.]]
</td>
</tr>
</table>
== Regular Polygon Point Tool ==
ICON: [[File:polygonstrip_tool_tnpoint_tool_tn.png]]
MENU: '''Object → Surface Special → Regular PolygonPoint'''
TO DRAW A REGULAR POLYGONPOINT:
# Activate the '''Regular Polygon Point Tool'''. # Left-click to create establish the origin location of the Regular Polygon.# Drag away from the origin and left-click a second time to define the Regular Polygon's diameter.# Drag the mouse to increase or decrease the number of sides desired. Left-click a third time to finish drawing the Regular Polygonpoint.
NOTES, SPECIAL CASES OR EXCEPTIONS: This tool creates a regular polygon with an arbitrary number of sides within a circumscribing circle of a specified radius.
PYTHON COMMAND: point(label,x0,y0,z0)
PYTHON COMMAND: polygon_reg(label,x0,y0,z0,radius,n_sides)
 REGULAR POLYGON POINT PARAMETERS
{| class="wikitable"
|-
| project units
| -
| X-coordinates coordinate of base point
|-
! scope="row" | LCS_Y
| project units
| -
| Y-coordinates coordinate of base point
|-
! scope="row" | LCS_Z
| project units
| -
| Z-coordinates coordinate of base |-! scope="row" | rot_X| real numeric| degrees | - | local rotation about X-axis|-! scope="row" | rot_Y| real numeric| degrees | - | local rotation about Y-axis|-! scope="row" | rot_Z| real numeric| degrees | - | local rotation about Z-axis|-! scope="row" | radius| real numeric| project units | - | radius of circumscribing circle|-! scope="row" | side_count| integer numeric| -| - | number of side of regular polygon|-! scope="row" | top_width| real numeric| project units | - | -point
|}
Â
[[File:point_new.png]]
Â
== Polyline Tool ==
Â
ICON: [[File:polyline_tool_tn.png]]
Â
MENU: '''Object → Curve → Polyline'''
Â
TO DRAW A POLYLINE:
Â
# Activate the '''Polyline Tool'''.
# Click anywhere on the active work plane to create nodes. The polyline's contour is rendered as soon as the second node is defined. A polyline must have at least two nodes.
# Create as many nodes as you want. You can finish the drawing either by double-clicking on the last node or first creating the last node and pressing the keyboard's {{key|Enter}} key.
# The polyline can be closed at any time using the keyboard shortcut {{key|C}}. This connects the last drawn node to the first.
Â
NOTES, SPECIAL CASES OR EXCEPTIONS: If a polyline object is originally drawn as an open curve, you can turn it into a closed one by placing a check mark in the box labeled '''Close Curve'''.
The property dialog of a polyline object lists the individual nodes and their coordinates ordered by the node ID. You can select and highlight each node and change its coordinates using the {{key|Edit}} button of the dialog. You can also delete each node using the {{key|Delete}} key or insert a new node between the selected node and its next node using the {{key|Insert}} key. The new node is placed at the midpoint between the selected node and the node having the next ID number.
Â
Â
PYTHON COMMAND: polyline(label,(x0,y0,z0),(x1,y1,z1) ... )
Â
<table>
<tr>
<td>
[[Image:cad_surf7cad_curve8.png|thumb|left|480px|The property dialog of the regular polygon polyline object.]]
</td>
</tr>
<tr>
<td>
[[Image:resize_polygon_strip_new19_polyline_tn_new.png|thumb|left|550px|The geometry of the regular polygon object with N = 8 (octagon)Drawing a polyline.]]
</td>
</tr>
</table>
== Spiral Strip Polystrip Tool ==
ICON: [[File:spiralstrip_tool_tnpolystrip_tool_tn.png|Polystrip Tool]]
MENU: '''Object → Surface → Spiral StripPolystrip'''
TO DRAW A SPIRAL STRIPPOLYSTRIP:
# Activate the '''Spiral Strip Polystrip Tool'''. # Left-click Click anywhere on the active work plane to establish the origin of the Spiral Stripcreate nodes. The polystrip's inner-radius.# Drag away from contour is rendered as soon as the origin to expand the inner radiusthird node is defined. Left-click a second time to set the inner radius and create the starting point for the outer radiusA Polystrip must have at least three nodes.# Drag Create as many nodes as you want. You can finish the mouse away from the second point to expand drawing either by double-clicking on the outer radius (last node or closer to contract first creating the radius). Left-click a third time to complete last node and pressing the spiralkeyboard's {{key|Enter}} key.
NOTES, SPECIAL CASES OR EXCEPTIONS: Checking the '''Inner Taper''' box creates The property dialog of a rounded taper at polystrip object lists the inner edge of each spiral arm individual nodes and their coordinates ordered by drawing an exponential curve from a user-defined edge inset point to that edge's opposite corner vertexthe node ID. Checking You can select and highlight each node and change its coordinates using the '''Outer Taper''' box creates a rounded taper at {{key|Edit}} button of the outer edge of dialog. You can also delete each spiral arm by drawing an exponential curve from node using the {{key|Delete}} key or insert a user-defined edge inset point to that edge's opposite corner vertex.. '''Inset Distance''' establishes an imaginary offset point positioned away from new node between the corner vertex from selected node and its next node using the inner or outer edge{{key|Insert}} key. The '''Inner Radius''' setting new node is not available when placed at the '''Dual Arm''' option is enabledmidpoint between the selected node and the node having the next ID number.
PYTHON COMMAND: spiral_strippolystrip(label,(x0,y0,z0),width,radius_inner,radius_outer,n_turns(x1,spiral_diry1,is_dualz1) ... )
SPIRAL STRIP <table><tr><td> [[Image:cad_surf9.png|thumb|left|480px|The property dialog of the polystrip object.]] </td></tr></table><table><tr><td> [[Image:polystripsteps.png|thumb|left|550px|Drawing a polystrip.]] </td></tr></table> == Pyramid Tool == ICON: [[File:pyramid_tool_tn.png]]  MENU: '''Object → Solid → Pyramid''' TO DRAW A PYRAMID: # Activate the '''Pyramid Tool'''.# Left-click to establish the first point of the rectangular base plane.# Define the desired area of the base plane by dragging the mouse away from the first point. Left-click a second time to establish the base plane.# Drag the mouse away from the base plane to establish the desired height. Left-click a third time to complete the pyramid.  PYTHON COMMAND: pyramid(label,x0,y0,z0,base_x,base_y,height[,top_x,top_y,cap_top,cap_bottom])  PYRAMID PARAMETERS
{| class="wikitable"
|-
| local rotation about Z-axis
|-
! scope="row" | inner_radiusbase_size_X
| real numeric
| project units
| -
|-
! scope="row" | outer_radiusbase_size_Y
| real numeric
| project units
| -
|-
! scope="row" | strip_widthtop_size_X
| real numeric
| project units
| - 0
| -
|-
! scope="row" | turnstop_size_Y| integer real numeric
| project units
| 2| number of spiral turns|-! scope="row" | ccw| Boolean0
| -
| TRUE
| if TRUE, creates counterclockwise right-handedness
|-
! scope="row" | dual_armheight| Booleanreal numeric| project units | -
| -
| FALSE
| creates a dual-arm spiral
|-
! scope="row" | inner_tapertop_offset_X| Booleanreal numeric| project units | 0
| -
| FALSE
| if TRUE, tapers spiral strip from inner end
|-
! scope="row" | inner_insettop_offset_Y
| real numeric
| project units
| 0| when inner_taper is TRUE, a nonzero value creates inner inset-
|-
! scope="row" | outer_taperfix_center_X
| Boolean
| -
| FALSETRUE | if TRUE, tapers spiral strip from outer endfixes X-coordinate of base
|-
! scope="row" | outer_insetfix_center_Y| real numericBoolean| project units -| 0TRUE | when outer_taper is TRUE, a nonzero value creates outer insetfixes Y-coordinate of base
|-
! scope="row" | taper_pointingcap_top| list: {inward, outward}Boolean
| -
| inwardTRUE | sets the direction spiral's end tapers point toplaces a cap at top|-! scope="row" | cap_bottom| Boolean| -| TRUE | places a cap at bottom base
|}
<tr>
<td>
[[Image:cad_surf8cad_solid4.png|thumb|left|480px|The property dialog of the spiral strip pyramid object.]]
</td>
</tr>
</table>
<table>
<tr>
<td>
[[Image:resize_spiral_strip_newresize_pyramid_new.png|thumb|left|550px|The geometry of the spiral strip pyramid object.]]
</td>
</tr>
<tr>
<td>
[[Image:12c_spiral_strip_tn_newCad_solid4_2nd.png|thumb|left|550px480px|A dual-arm spiral strip objectThe property dialog of the pyramid with nonzero top dimensions.]]
</td>
</tr>
</table>
Â
== Polystrip Tool ==
Â
ICON: [[File:polystrip_tool_tn.png|Polystrip Tool]]
Â
MENU: '''Object → Surface → Polystrip'''
Â
TO DRAW A POLYSTRIP:
Â
# Activate the '''Polystrip Tool'''.
# Click anywhere on the active work plane to create nodes. The polystrip's contour is rendered as soon as the third node is defined. A Polystrip must have at least three nodes.
# Create as many nodes as you want. You can finish the drawing either by double-clicking on the last node or first creating the last node and pressing the keyboard's {{key|Enter}} key.
Â
NOTES, SPECIAL CASES OR EXCEPTIONS: The property dialog of a polystrip object lists the individual nodes and their coordinates ordered by the node ID. You can select and highlight each node and change its coordinates using the {{key|Edit}} button of the dialog. You can also delete each node using the {{key|Delete}} key or insert a new node between the selected node and its next node using the {{key|Insert}} key. The new node is placed at the midpoint between the selected node and the node having the next ID number.
Â
Â
PYTHON COMMAND: polystrip(label,(x0,y0,z0),(x1,y1,z1) ... )
Â
Â
<table>
<tr>
<td>
[[Image:cad_surf904b_pyramid_tn_newA.png|thumb|left|480px550px|The property dialog of the polystrip objectA pyramid with nonzero top dimensions.]]
</td>
</tr>
</table>
<table>
<tr>
<td>
[[Image:19 polyline tn newCad_solid4_3rd.png|thumb|left|550px480px|Drawing a polystripThe property dialog of the pyramid with nonzero top offset values.]] </td></tr><tr><td> [[Image:04b_pyramid_tn_newB.png|thumb|left|720px|A pyramid with nonzero top offset values.]]
</td>
</tr>
</table>
== NURBS Radial Strip Tool ==
ICON: [[File:nurbsstrip_tool_tnradialstrip_tool_tn.png]]
MENU: '''Object → Surface → NURBS Radial Strip'''
TO DRAW A NURBS RADIAL STRIP:
# Activate the '''NURBS Radial Strip Tool'''. # Click anywhere on the active work plane Left-click to create nodesestablish the origin point. The contour # Drag the mouse away from origin and left-click a second time to establish the radius and the first leg of the NURBS radial strip is rendered as soon as the third node is defined. A NURBS Strip must have at least three nodes.# Create as many nodes as you want. You can finish Drag the drawing either by double-clicking on mouse to the last node or first creating desired location to define the last node and pressing angle of the keyboard's {{key|Enter}} keyradial strip. Left-click a third time to complete the radial strip.
NOTES, SPECIAL CASES OR EXCEPTIONS: The property dialog of a NURBS strip object lists the individual nodes and their coordinates ordered by the node ID. You can select and highlight each node and change its coordinates using the {{key|Edit}} button of the dialog. You can also delete each node using the {{key|Delete}} key or insert a new node between the selected node and its next node using the {{key|Insert}} key. The new node is placed at the midpoint between the selected node and the node having the next ID number.
PYTHON COMMAND: radial_strip(label,x0,y0,z0,radius,base_lenght,angle)
PYTHON COMMAND: nurbs_strip(label,(x0,y0,z0),(x1,y1,z1) ... )
RADIAL STRIP PARAMETERS
{| class="wikitable"
|-
! scope="col"| Parameter Name
! scope="col"| Value Type
! scope="col"| Units
! scope="col"| Default Value
! scope="col"| Notes
|-
! scope="row" | LCS_X
| real numeric
| project units
| -
| X-coordinates of base
|-
! scope="row" | LCS_Y
| real numeric
| project units
| -
| Y-coordinates of base
|-
! scope="row" | LCS_Z
| real numeric
| project units
| -
| Z-coordinates of base
|-
! scope="row" | rot_X
| real numeric
| degrees
| -
| local rotation about X-axis
|-
! scope="row" | rot_Y
| real numeric
| degrees
| -
| local rotation about Y-axis
|-
! scope="row" | rot_Z
| real numeric
| degrees
| -
| local rotation about Z-axis
|-
! scope="row" | radius
| real numeric
| project units
| -
| -
|-
! scope="row" | base_length
| real numeric
| project units
| 0
| A nonzero value creates a flattened base
|-
! scope="row" | angle
| real numeric
| degrees
| -
| wedge angle
|}
<table>
<tr>
<td>
[[Image:cad_surf10cad_surf3.png|thumb|left|480px|The property dialog of the NURBS radial strip object.]]
</td>
</tr>
</table>
<table>
<tr>
<td>
[[Image:20_Nurbs_tn_newresize_radial_strip_new.png|thumb|left|550px|Drawing The geometry of the radial strip object.]] </td></tr><tr><td> [[Image:cad_surf3_2nd.png|thumb|left|480px|The property dialog of the radial strip object with a NURBS nonzero base length.]] </td></tr><tr><td> [[Image:10b_radial_strip_tn_new.png|thumb|left|550px|A radial stripobject with a nonzero base length.]]
</td>
</tr>
</table>
== Surface Generator Rectangle Strip Tool ==
ICON: [[File:surf_gen_tool_tnrectstrip_tool_tn.png]]
MENU: '''Object → Surface → Surface GeneratorRectangle Strip'''
TO DRAW A PARAMETRIC SURFACERECTANGLE STRIP:
# Activate the '''Surface Generator Rectangle Strip Tool'''. # Left-click to establish the location of the new parametric surface. A default 2D sinusoidal surface appears in the project workspaceX/Y axial triangulation point.# The surface generator dialog opens up on Drag the lower left corner of the screen. You have three options for '''Orientation''': XY, YZ or ZX planes. With the XY plane orientation, the parametric surface is expressed as z = f(x,y). With the YZ plane orientation, the parametric surface is expressed as x = f(y,z). With the ZX plane orientation, the parametric surface is expressed as y = f(z,x). # Enter start, stop and step values for mouse outward from this point to define the ranges desired area of both coordinate variables in the selected orientation planerectangle strip.# Enter Left-click a mathematical expression in terms of the coordinate variables in the selected orientation plane for the definition of the parametric surface.# Make sure to click the OK button of the dialog second time to complete the surface constructionshape.
NOTES, SPECIAL CASES OR EXCEPTIONS: You can always edit and modify a parametric surface after you first create it in the surface generator. The property dialog of a parametric surface object is indeed the surface generator itself, where you can change the parameter values or the defining expression.
PYTHON COMMAND: rect_strip(label,x0,y0,z0,side_x,side_y)
PYTHON COMMAND: param_surface(label,x0,y0,z0,orientation,start_1,stop_1,step_1,start_2,stop_2,step_2,function)
 PARAMETRIC SURFACE RECTANGLE STRIP PARAMETERS
{| class="wikitable"
|-
| project units
| -
| X-coordinates of the surfacebase
|-
! scope="row" | LCS_Y
| project units
| -
| Y-coordinates of the surfacebase
|-
! scope="row" | LCS_Z
| project units
| -
| Z-coordinates of the surfacebase
|-
! scope="row" | rot_X
| real numeric
| degrees
| 0 -
| local rotation about X-axis
|-
| real numeric
| degrees
| 0 -
| local rotation about Y-axis
|-
| real numeric
| degrees
| 0 -
| local rotation about Z-axis
|-
! scope="row" | orientation| three options: XY, YZ or ZX| - | XY | the coordinate plane in which the parametric surface is drawn|-! scope="row" | start_1side_X
| real numeric
| project units
| 0 - | start value of range of the first coordinate variabledimension along X-axis
|-
! scope="row" | stop_1side_Y
| real numeric
| project units
| 10 - | stop value of range of the first coordinate variabledimension along Y-axis
|-
! scope="row" | step_1fix_center_X| integer numericBoolean| project units -| 1TRUE | step value fixes X-coordinate of range of the first coordinate variablebase
|-
! scope="row" | start_2fix_center_Y| real numericBoolean| project units -| 0 TRUE | start value fixes Y-coordinate of range of the second coordinate variablebase
|-
! scope="row" | stop_2rect_loop| Boolean| -| FALSE| if TRUE, creates a rectangular loop|-! scope="row" | loop_width
| real numeric
| project units
| 10 | stop value of range of the second coordinate variable|-! scope="row" | step_2| integer numeric| project units | 1| step value of range of the second coordinate variable|-! scope="row" | expression| text string
| -
| sin(pi*x/5)*sin(pi*y/5)
| mathematical expression in two local coordinate variables
|}
<tr>
<td>
[[Image:Cad surf11 newcad_surf1.png|thumb|left|480px|The surface generator property dialogof the rectangle strip object.]]
</td>
</tr>
</table>
<table>
<tr>
<td>
[[Image:Cad surf12 newresize_rectangular_strip_new.png|thumb|left|550px|The default 2D sinusoidal surface created by geometry of the surface generatorrectangle strip object.]] </td></tr><tr><td> [[Image:cad_surf1_2nd.png|thumb|left|480px|The property dialog of the rectangle loop object with a nonzero loop width.]] </td></tr><tr><td> [[Image:resize_rectangular_strip_new1.png|thumb|left|550px|A rectangular loop object with a nonzero loop width.]] </td></tr><tr><td> [[Image:lock_base_tn.jpg|thumb|left|550px|Locking the base of a rectangle strip.]] </td></tr><tr><td> [[Image:draw_modes_tn.jpg|thumb|left|550px|The different drawing modes of rectangle strip.]]
</td>
</tr>
</table>
== Line Regular Polygon Tool ==
ICON: [[File:line_tool_tnpolygonstrip_tool_tn.png]]
MENU: '''Object → Curve Surface → LineRegular Polygon'''
TO DRAW A LINEREGULAR POLYGON:
# Activate the '''Line Regular Polygon Tool'''. # left Left-click anywhere on the workplane to begin drawing create the lineorigin of the Regular Polygon.# Drag away from the origin and left-click a second time to complete define the Regular Polygon's diameter.# Drag the mouse to increase or decrease the number of sides desired. Left-click a third time to finish drawing the lineRegular Polygon.
NOTES, SPECIAL CASES OR EXCEPTIONS: When the check box '''Lock Center''' is checked, changing the line's length expands or shrinks it equally from both ends. To create This tool creates a line perpendicular to the current work plane, hold down the {{key|Alt}} key while dragging the mouse to establish the line's end pointregular polygon with an arbitrary number of sides within a circumscribing circle of a specified radius.
PYTHON COMMAND: linepolygon_reg(label,x0,y0,z0,len[radius,dir]n_sides)
LINE REGULAR POLYGON PARAMETERS
{| class="wikitable"
|-
| local rotation about Z-axis
|-
! scope="row" | lengthradius
| real numeric
| project units
| -
| radius of circumscribing circle
|-
! scope="row" | side_count
| integer numeric
| -
| -
| number of side of regular polygon
|-
! scope="row" | fix_centertop_width| Booleanreal numeric| project units | -
| -
| FALSE
| fixes midpoint coordinates
|}
<tr>
<td>
[[Image:cad_curve1cad_surf7.png|thumb|left|480px|The property dialog of the line regular polygon object.]]
</td>
</tr>
<tr>
<td>
[[Image:vert_line_newresize_polygon_strip_new.png|thumb|left|550px|Drawing a vertical line The geometry of the regular polygon objectwith N = 8 (octagon).]]
</td>
</tr>
</table>
Â
== Solid Generator ==
Â
ICON: [[File:solid_gen_tool_tn.png]]
Â
MENU: '''Object → Solid → Solid Generator'''
Â
TO DRAW A PLATONIC SOLID:
Â
# Activate the '''Solid Generator Tool'''.
# In the solid generator dialog, select one of the five platonic solid types '''Tetrahedron''', '''Hexahedron''' '''Octahedron''', '''Dodecahedron''', or '''Icosahedron'''.
# The dialog shows the number of faces, edges, nodes and the side length of the standard platonic solid of the selected type.
# Specify the value of the '''Scale''' parameter based on the displayed '''Side Length'''.
# Before you create the solid and add its name to the navigation tree, you have an opportunity to preview it. To do so, click the {{key|Preview}} button of the dialog. A yellow ghost of the solid appears in the project workspace. You can change the scale and resize the solid. Once you are satisfied with the generated solid, click the {{key|Create}} button to finalize its creation.
Â
NOTES, SPECIAL CASES OR EXCEPTIONS: All the solid objects generated by the solid generator are of polymesh type.
Â
Â
PYTHON COMMAND: None
Â
Â
PLATONIC SOLID PROPERTIES
{| class="wikitable"
|-
! scope="col"| Solid Type
! scope="col"| No. of Faces
! scope="col"| No. of Edges
! scope="col"| No. of Vertices
! scope="col"| Side Length
! scope="col"| Geometry
|-
! scope="row" | Tetrahedron
| 4
| 6
| 4
| 2
| [[Image:CAD MAN23.png|thumb|left|150px]]
|-
! scope="row" | Tessellated Hexahedron
| 12
| 12
| 8
| 2
| [[Image:CAD MAN24.png|thumb|left|150px]]
|-
! scope="row" | Octahedron
| 8
| 12
| 6
| √2
| [[Image:CAD MAN25.png|thumb|left|150px]]
|-
! scope="row" | Tessellated Dodecahedron
| 36
| 30
| 20
| √5 - 1
| [[Image:CAD MAN26.png|thumb|left|150px]]
|-
! scope="row" | Icosahedron
| 20
| 30
| 12
| 2
| [[Image:CAD MAN27.png|thumb|left|150px]]
|}
Â
<table>
<tr>
<td>
[[Image:18_Line_tn_newcad_solid8.png|thumb|left|550px480px|Drawing a horizontal line objectThe solid generator dialog.]]
</td>
</tr>
</table>
== Circle Sphere Tool ==
ICON: [[File:circle_tool_tnsphere_tool_tn.png]]
MENU: '''Object → Curve Solid → CircleSphere'''
TO DRAW A CIRCLESPHERE:
# Activate the '''Circle Sphere Tool'''. # Left-click at the desired location on the active grid to establish the originpoint.# Drag your the mouse away outward from the origin to set establish the desired radius.# Left -click a second time to complete the circlesphere.
PYTHON COMMAND: circlesphere(label,x0,y0,z0,radius[,start_angle,end_angle])
CIRCLE SPHERE PARAMETERS
{| class="wikitable"
|-
| real numeric
| degrees
| 0
| start azimuth angle
|-
| real numeric
| degrees
| 360
| end azimuth angle
|}
<tr>
<td>
[[Image:cad_curve2cad_solid5.png|thumb|left|480px|The property dialog of the circle sphere object.]]
</td>
</tr>
</table>
<table>
<tr>
<td>
[[Image:resize_circle_newresize_sphere_new.png|thumb|left|550px|The geometry of the circle sphere object.]]
</td>
</tr>
</table>
<table>
<tr>
<td>
[[Image:21_circle_tn_newAcad_solid5_2nd.png|thumb|left|400px480px|The local coordinate system (LCS) property dialog of the circle objectsphere with a nonzero start and end angles.]]
</td>
</tr>
<tr>
<td>
[[Image:21_circle_tn_newB05b_sphere_tn_new.png|thumb|left|400px550px|A circle sphere with a nonzero start and end angleangles.]]
</td>
</tr>
</table>
== Super-Quadratic Spiral Curve Tool ==
ICON: [[File:superquad_tool_tnspiral_tool_tn.png]]
MENU: '''Object → Curve → Super-quadratic CurveSpiral'''
TO DRAW A SUPER-QUADRATIC SPIRAL CURVE:
# Activate the '''Super-Quadratic Spiral Curve Tool'''. # Left-click to establish the initial X/Y diameter triangulation inner-radial origin of the Spiral.# Drag away from the origin to expands the inner radius (drag inward toward the origin to reduces the inner radius).# Left-click a second time to set the inner radius and create the anchor pointfor the outer radius.# Drag the mouse away from this the second point to define expand the desired sizeouter radius or closer to reduce the radius.# Left-click a second third time to complete the superquadspiral.
NOTES, SPECIAL CASES OR EXCEPTIONS: The parameter '''Order''' changes the radius of the four corners of the super-quadratic curve. The second-order super-quadratic curve (n = 2) corresponds to an ellipse. Entering a higher value for the order decreases the corner radius and make the curve look like a rectangle with rounded corners. Checking the '''Rectangle''' box creates a rectangular curve with no corner rounding.
PYTHON COMMAND: spiral_curve(label,x0,y0,z0,radius_inner,radius_outer,nturns,spiral_dir,is_dual)
PYTHON COMMAND: superquad(label,x0,y0,z0,diam_x,diam_y,order)
 SUPER-QUADRATIC SPIRAL CURVE PARAMETERS
{| class="wikitable"
|-
| local rotation about Z-axis
|-
! scope="row" | diameter_Xinner_radius
| real numeric
| project units
| -
| diameter along X-axis
|-
! scope="row" | diameter_Youter_radius
| real numeric
| project units
| -
| diameter along Y-axis
|-
! scope="row" | orderturns
| integer numeric
| degreesproject units
| 2
| a higher order resembles a rectangle with rounded cornersnumber of spiral turns
|-
! scope="row" | is_rectangleccw
| Boolean
| -
| FALSETRUE| if TRUE, draws a rectanglecreates counterclockwise right-handedness
|-
! scope="row" | fix_center_Xdual_arm
| Boolean
| -
| TRUE FALSE| fixes Xcreates a dual-coordinate of base|-! scope="row" | fix_center_Y| Boolean| -| TRUE | fixes Y-coordinate of basearm spiral
|}
<tr>
<td>
[[Image:cad_curve3_newcad_curve6.png|thumb|left|480px|The property dialog of the super-quadratic spiral curve object.]]
</td>
</tr>
<tr>
<td>
[[Image:resize_superquadratic_newresize_sprial_new.png|thumb|left|550px|The geometry of the super-quadratic spiral curve object.]] </td></tr></table><table><tr><td> [[Image:22a_super_quad_tn_new.png|thumb|left|400px|The local coordinate system (LCS) of the super-quadratic curve object.]] </td></tr><tr><td> [[Image:22b_super_quad_tn_new.png|thumb|left|400px|Comparing super-quadratic curves of different orders.]]
</td>
</tr>
</table>
== Parabola Spiral Strip Tool ==
ICON: [[File:parabola_tool_tnspiralstrip_tool_tn.png]]
MENU: '''Object → Curve Surface → ParabolaSpiral Strip'''
TO DRAW A PARABOLASPIRAL STRIP:
# Activate the '''Parabola Spiral Strip Tool'''. # Left-click to set establish the Focal Pointorigin of the Spiral Strip's inner-radius.# Drag away from the focal point and leftorigin to expand the inner radius. Left-click a second time to set the desired Offsetinner radius and create the starting point for the outer radius.# Drag and leftthe mouse away from the second point to expand the outer radius (or closer to contract the radius). Left-click a third time to complete the Parabolic Curvespiral.
NOTES, SPECIAL CASES OR EXCEPTIONS: The parameters Checking the '''Axial LengthInner Taper''' and box creates a rounded taper at the inner edge of each spiral arm by drawing an exponential curve from a user-defined edge inset point to that edge's opposite corner vertex. Checking the ''Aperture'Outer Taper'' adjust ' box creates a rounded taper at the size outer edge of the opening of the parabolaeach spiral arm by drawing an exponential curve from a user-defined edge inset point to that edge's opposite corner vertex. Changing . '''Inset Distance''' establishes an imaginary offset point positioned away from the value of either one automatically adjusts corner vertex from the value of the otherinner or outer edge. Checking the box labeled The '''Create HalfInner Radius''' bisects setting is not available when the parabola and removes its bottom half. You can revolve the resulting half-curve to create a paraboloid'''Dual Arm''' option is enabled.
PYTHON COMMAND: parabolaspiral_strip(label,x0,y0,z0,focal_lengthwidth,axial_lengthradius_inner,half_onlyradius_outer,n_turns,spiral_dir,is_dual)
PARABOLA SPIRAL STRIP PARAMETERS
{| class="wikitable"
|-
| local rotation about Z-axis
|-
! scope="row" | focal_lengthinner_radius
| real numeric
| project units
| -
|-
! scope="row" | axial_lengthouter_radius
| real numeric
| project units
| -
|-
! scope="row" | aperturestrip_width
| real numeric
| degreesproject units | -
| -
| is determined automatically by focal and axial lengths or can be set independently
|-
! scope="row" | create_halfturns| integer numeric| project units | 2| number of spiral turns|-! scope="row" | ccw| Boolean| -| TRUE| if TRUE, creates counterclockwise right-handedness |-! scope="row" | dual_arm
| Boolean
| -
| FALSE
| creates a dual-arm spiral|-! scope="row" | inner_taper| Boolean| -| FALSE| if TRUE, draws the left half onlytapers spiral strip from inner end|-! scope="row" | inner_inset| real numeric| project units | 0| when inner_taper is TRUE, a nonzero value creates inner inset|-! scope="row" | outer_taper| Boolean| -| FALSE| if TRUE, tapers spiral strip from outer end|-! scope="row" | outer_inset| real numeric| project units | 0| when outer_taper is TRUE, a nonzero value creates outer inset|-! scope="row" | taper_pointing| list: {inward, outward}| -| inward| sets the direction spiral's end tapers point to
|}
<tr>
<td>
[[Image:cad_curve4cad_surf8.png|thumb|left|480px|The property dialog of the parabola curve spiral strip object.]]
</td>
</tr>
</table>
<table>
<tr>
<td>
[[Image:resize_parabola_newresize_spiral_strip_new.png|thumb|left|550px|The geometry of the parabola curve spiral strip object.]]
</td>
</tr>
</table>
<table>
<tr>
<td>
[[Image:23_parabola_tn_newcad_surf8_dual.png|thumb|left|550px480px|Drawing The property dialog of a halfdual-arm spiral strip object.]] </td></tr><tr><td> [[Image:12c_spiral_strip_tn_new.png|thumb|left|550px|A dual-parabolaarm spiral strip object.]]
</td>
</tr>
</table>
== Hyperbola Super-Quadratic Curve Tool ==
ICON: [[File:hyperbola_tool_tnsuperquad_tool_tn.png]]
MENU: '''Object → Curve → HyperbolaSuper-quadratic Curve'''
TO DRAW A HYPERBOLASUPER-QUADRATIC CURVE:
# Activate the '''Hyperbola Super-Quadratic Curve Tool'''. # Left-click to define establish the initial X-radius origin. Construction guides will appear to aid in the drawing process/Y diameter triangulation point.# Drag the mouse away from the origin this point to establish define the desired X-radiussize. # Left-click a second time.# To establish the Y-radius and the hyperbola's leg length, drag the mouse to the desired location and left-click to complete the Hyperbolasuperquad.
NOTES, SPECIAL CASES OR EXCEPTIONS: Checking the box labeled The parameter '''Neg. BranchOrder''' creates changes the opposite branch radius of the hyperbola four corners of the super-quadratic curve. The second-order super-quadratic curve (n = 2) corresponds to an ellipse. Entering a higher value for the order decreases the corner radius and make the curve look like a rectangle with rounded corners. Checking the box labeled '''Create HalfRectangle''' bisects the hyperbola and removes its bottom half. You can revolve the resulting curve to create box creates a hyperboloidrectangular curve with no corner rounding.
PYTHON COMMAND: hyperbolasuperquad(label,x0,y0,z0,diam_x,diam_y,axial_length,half_onlyorder)
HYPERBOLA SUPER-QUADRATIC CURVE PARAMETERS
{| class="wikitable"
|-
| diameter along Y-axis
|-
! scope="row" | axial_lengthorder| real integer numeric| project units degrees| - 2| -a higher order resembles a rectangle with rounded corners
|-
! scope="row" | create_halfis_rectangle
| Boolean
| -
| FALSE
| if TRUE, draws one half of one branch onlya rectangle
|-
! scope="row" | negative_branchfix_center_X| Boolean
| -
| FALSETRUE | fixes X-coordinate of base|-! scope="row" | fix_center_Y| Boolean| -| if TRUE, draws the negative branch only| fixes Y-coordinate of base
|}
<tr>
<td>
[[Image:cad_curve5cad_curve3_new.png|thumb|left|480px|The property dialog of the hyperbola super-quadratic curve object.]]
</td>
</tr>
<tr>
<td>
[[Image:24a_hyperbola_tn_newresize_superquadratic_new.png|thumb|left|550px|The geometry of the hyperbola super-quadratic curve object.]]
</td>
</tr>
<tr>
<td>
[[Image:24b_hyperbola_tn_new22b_super_quad_tn_new.png|thumb|left|550px400px|Drawing a halfComparing super-hyperbola or the negative branch quadratic curves of the hyperboladifferent orders.]]
</td>
</tr>
</table>
== Spiral Curve Tool Surface Generator ==
ICON: [[File:spiral_tool_tnsurf_gen_tool_tn.png]]
MENU: '''Object → Curve Surface → SpiralSurface Generator'''
TO DRAW A SPIRAL CURVEPARAMETRIC SURFACE:
# Activate the '''Spiral Curve Surface Generator Tool'''. # Left-click to establish the inner-radial origin location of the Spiralnew parametric surface. A default 2D sinusoidal surface appears in the project workspace.# Drag away from The surface generator dialog opens up on the origin to expands lower left corner of the inner radius screen. You have three options for '''Orientation''': XY, YZ or ZX planes. With the XY plane orientation, the parametric surface is expressed as z = f(drag inward toward x,y). With the origin to reduces YZ plane orientation, the inner radiusparametric surface is expressed as x = f(y,z). With the ZX plane orientation, the parametric surface is expressed as y = f(z,x). # Left-click a second time to set the inner radius Enter start, stop and create the anchor point step values for the outer radiusranges of both coordinate variables in the selected orientation plane. # Drag Enter a mathematical expression in terms of the mouse away from coordinate variables in the second point to expand selected orientation plane for the outer radius or closer to reduce definition of the radiusparametric surface.# Left-Make sure to click a third time the <b>OK</b> button of the dialog to complete the spiralsurface construction.
NOTES, SPECIAL CASES OR EXCEPTIONS: You can always edit and modify a parametric surface after you first create it in the surface generator. The property dialog of a parametric surface object is indeed the surface generator itself, where you can change the parameter values or the defining expression.
PYTHON COMMAND: spiral_curve(label,x0,y0,z0,radius_inner,radius_outer,nturns,spiral_dir,is_dual)
PYTHON COMMAND: param_surface(label,x0,y0,z0,orientation,start_1,stop_1,step_1,start_2,stop_2,step_2,function)
SPIRAL CURVE PARAMETRIC SURFACE PARAMETERS
{| class="wikitable"
|-
| project units
| -
| X-coordinates of base the surface
|-
! scope="row" | LCS_Y
| project units
| -
| Y-coordinates of base the surface
|-
! scope="row" | LCS_Z
| project units
| -
| Z-coordinates of base the surface
|-
! scope="row" | rot_X
| real numeric
| degrees
| - 0
| local rotation about X-axis
|-
| real numeric
| degrees
| - 0
| local rotation about Y-axis
|-
| real numeric
| degrees
| - 0
| local rotation about Z-axis
|-
! scope="row" | inner_radiusorientation| three options: XY, YZ or ZX| - | XY | the coordinate plane in which the parametric surface is drawn|-! scope="row" | start_1
| real numeric
| project units
| - 0 | -start value of range of the first coordinate variable
|-
! scope="row" | outer_radiusstop_1
| real numeric
| project units
| - 10 | -stop value of range of the first coordinate variable
|-
! scope="row" | turnsstep_1
| integer numeric
| project units
| 21| number step value of spiral turnsrange of the first coordinate variable
|-
! scope="row" | ccwstart_2| Booleanreal numeric| -project units | TRUE0 | if TRUE, creates counterclockwise right-handedness start value of range of the second coordinate variable
|-
! scope="row" | dual_armstop_2| Booleanreal numeric| project units | 10 | stop value of range of the second coordinate variable|-! scope="row" | step_2| integer numeric| project units | 1| step value of range of the second coordinate variable|-! scope="row" | expression| text string
| -
| FALSEsin(pi*x/5)*sin(pi*y/5)| creates a dual-arm spiralmathematical expression in two local coordinate variables
|}
<tr>
<td>
[[Image:cad_curve6Cad surf11 new.png|thumb|left|480px|The property surface generator dialog of the spiral curve object.]]
</td>
</tr>
<tr>
<td>
[[Image:resize_sprial_newCad surf12 new.png|thumb|left|550px|The geometry of default 2D sinusoidal surface created by the spiral curve objectsurface generator.]]
</td>
</tr>
</table>
== Helix Taper Strip Tool ==
ICON: [[File:helix_tool_tntaperstrip_tool_tn.png]]
MENU: '''Object → Curve Surface → HelixTaper Strip'''
TO DRAW A HELIXTAPER STRIP:
# Activate the '''Helix Taper Strip Tool'''. # Left-click to establish the origin of the inner-radiusbase length midpoint.# Drag away outward from the origin this point to expand define the inner radius, (toward it to contract desired length and angle of the inner radius)base side.# Left-click a second time to set define the inner radius and to base.# To establish the anchor point from which you will set the height of , drag the helix.# Drag your cursor "up" and mouse away from the second anchor point base to increase the height of the helixdesired location.# Left-click a third time to complete the helixTaper Strip.
NOTES, SPECIAL CASES OR EXCEPTIONS: You can define a helix curve with different values for '''Inner RadiusTaper Length''' establishes the distance between the base and '''Outer Radius''', which make top sides of the curve expanding or shrinkingtrapezoid. The If the '''HeightExponential''' parameter establishes check box is checked, the elevation two slanted sides of the end point of trapezoid are replaced by exponential curves passing through the helix with respect to start pointsame vertices.
PYTHON COMMAND: helixtaper_strip(label,x0,y0,z0,radius_innerbase_width,radius_outertop_width,heightlength,nturns,helix_diris_expo)
HELIX TAPER STRIP PARAMETERS
{| class="wikitable"
|-
| local rotation about Z-axis
|-
! scope="row" | inner_radiusbase_width
| real numeric
| project units
| same as outer radius -
| -
|-
! scope="row" | outer_radiustaper_length
| real numeric
| project units
| -
|-
! scope="row" | heighttop_width
| real numeric
| project units
| -
|-
! scope="row" | turnstop_offset| integer real numeric
| project units
| 20| number of spiral turnsA zero value creates an isosceles triangle
|-
! scope="row" | ccwexponential
| Boolean
| -
| TRUEFALSE| if TRUE, creates counterclockwise rightan exponential taper transition|-handedness ! scope="row" | create-half| Boolean| -| FALSE| keeps left half of taper strip only
|}
<tr>
<td>
[[Image:cad_curve7cad_surf6.png|thumb|left|480px|The property dialog of the helix curve taper strip object.]]
</td>
</tr>
<tr>
<td>
[[Image:resize_helix_newResize_taper_strip_new.png|thumb|left|550px|The geometry of the helix curve taper strip objectwith exponential side walls.]]
</td>
</tr>
</table>
<table>
<tr>
<td>
[[Image:26_helix_tn_new14b_taper_strip_tn_new.png|thumb|left|550px720px|The local coordinate system (LCS) of the helix curve objectA taper strip with linear side walls and a nonzero top offset.]]
</td>
</tr>
</table>
== Polyline Torus Tool ==
ICON: [[File:polyline_tool_tntorus_tool_tn.png]]
MENU: '''Object → Curve Solid → PolylineTorus'''
TO DRAW A POLYLINETORUS:
# Activate the '''Polyline Torus Tool'''. # Click anywhere on the active work plane Left-click to create nodes. The polyline's contour is rendered as soon as define the second node is defined. A polyline must have at least two nodescenter point.# Create as many nodes as you want. You can finish Drag the drawing either by double-clicking on mouse away from the last node or first creating the last node origin and pressing left-click a second time to establish the keyboard's {{key|Enter}} keyMajor Radius of the torus. # The polyline can be closed at any time using Drag the keyboard shortcut {{key|C}}. This connects mouse away from the last drawn node Major Radius construction path to establish the Minor Radius. Left-click a third time to complete the firsttorus.
NOTES, SPECIAL CASES OR EXCEPTIONS: If a polyline object is originally drawn as an open curve, you can turn it into a closed one by placing a check mark in the box labeled '''Close Curve'''.
The property dialog of a polyline object lists the individual nodes and their coordinates ordered by the node ID. You can select and highlight each node and change its coordinates using the {{key|Edit}} button of the dialog. You can also delete each node using the {{key|Delete}} key or insert a new node between the selected node and its next node using the {{key|Insert}} key. The new node is placed at the midpoint between the selected node and the node having the next ID number.
PYTHON COMMAND: torus(label,x0,y0,z0,radius_major,radius_minor[,start_angle,end_angle])
PYTHON COMMAND: polyline(label,(x0,y0,z0),(x1,y1,z1) ... )
 <table><tr><td> [[Image:cad_curve8.png|thumb|left|480px|The property dialog of the polyline object.]] </td></tr></table><table><tr><td> [[Image:19_polyline_tn_new.png|thumb|left|550px|Drawing a polyline.]] </td></tr></table> == NURBS Curve Tool == ICON: [[File:nurbs_tool_tn.png]]  MENU: '''Object → Curve → NURBS''' TO DRAW A NURBS CURVE: # Activate the '''NURBS Curve Tool'''. # Click anywhere on the active work plane to create nodes. The contour of the NURBS Curve is rendered as soon as the second node is defined. A NURBS Curve must have at least two nodes.# Create as many nodes as you want. You can finish the drawing either by double-clicking on the last node or first creating the last node and pressing the keyboard's {{key|Enter}} key. # The NURBS Curve can be closed at any time using the keyboard shortcut {{key|C}}. This connects the last drawn node to the first. NOTES, SPECIAL CASES OR EXCEPTIONS: If a NURBS Curve object is originally drawn as an open curve, you can turn it into a closed one by placing a check mark in the box labeled '''Close Curve'''. The property dialog of a NURBS Curve object lists the individual nodes and their coordinates ordered by the node ID. You can select and highlight each node and change its coordinates using the {{key|Edit}} button of the dialog. You can also delete each node using the {{key|Delete}} key or insert a new node between the selected node and its next node using the {{key|Insert}} key. The new node is placed at the midpoint between the selected node and the node having the next ID number.   PYTHON COMMAND: nurbs_curve(label,(x0,y0,z0),(x1,y1,z1) ... )  <table><tr><td> [[Image:cad_curve9_new.png|thumb|left|480px|The property dialog of the NURBS curve object.]] </td></tr></table><table><tr><td> [[Image:20_Nurbs_tn_new.png|thumb|left|550px|Drawing a NURBS curve.]] </td></tr></table> == Curve Generator == ICON: [[File:curve_gen_tool_tn.png]]  MENU: '''Object → Curve → Curve Generator''' TO DRAW A PARAMETRIC CURVE: # Activate the '''Curve Generator Tool'''. # Left-click to establish the location of the new parametric curve. A default oblique line appears in the project workspace.# The curve generator dialog opens up on the lower left corner of the screen. You have three options for '''Model''' type: '''Cartesian Curve''', '''Polar Curve''' or '''Parametric Curve'''. The default option is the Cartesian curve. # In the case of a Cartesian curve, you also have three options for '''Orientation''': XY, YZ or ZX planes. With the XY plane orientation, the Cartesian curve is expressed as y = f(x). With the YZ plane orientation, the Cartesian curve is expressed as z = f(y). With the ZX plane orientation, the Cartesian curve is expressed as x = f(z). # Enter the start, stop and step values for the range of the coordinate variable in the selected orientation plane.# Enter a mathematical expression in terms of the coordinate variable in the selected orientation plane for the definition of the Cartesian curve.# In the case of a polar curve, the radial coordinate is expressed as a function of the polar angle t: r = r(t). # In the case of a parametric curve, the x, y and z coordinates are expressed as three separate functions of the parameter t: x(t), y(t), z(t). # For a polar or parametric curve, enter the start, stop and step values for the range of the variable t.# Enter the defining expression(s) for the curve. # Make sure to click the OK button of the dialog to complete the curve construction.  NOTES, SPECIAL CASES OR EXCEPTIONS: You can always edit and modify a parametric curve after you first create it in the curve generator. The property dialog of a parametric curve object is indeed the curve generator itself, where you can change the parameter values or the defining expression(s). All the curves created by the curve generator are of the polyline type.   PYTHON COMMAND: param_curve(label,x0,y0,z0,model,orientation,start,stop,step,function[,y(t),z(t)])  PARAMETRIC CURVE TORUS PARAMETERS
{| class="wikitable"
|-
| project units
| -
| X-coordinates of the surfacebase
|-
! scope="row" | LCS_Y
| project units
| -
| Y-coordinates of the surfacebase
|-
! scope="row" | LCS_Z
| project units
| -
| Z-coordinates of the surfacebase
|-
! scope="row" | rot_X
| real numeric
| degrees
| 0 -
| local rotation about X-axis
|-
| real numeric
| degrees
| 0 -
| local rotation about Y-axis
|-
| real numeric
| degrees
| 0 -
| local rotation about Z-axis
|-
! scope="row" | model| three options: Cartesian, polar or parametric| - | Cartesian| the curve definition type|-! scope="row" | orientation| three options: XY, YZ or ZX| - | XY | the coordinate plane in which the Cartesian curve is drawn (only for Cartesian curve)|-! scope="row" | startmajor_radius
| real numeric
| project units
| 0 - | start value of range of the coordinate variable-
|-
! scope="row" | stopminor_radius
| real numeric
| project units
| 10 | stop value of range of the coordinate variable|-! scope="row" | step| integer numeric| project units | 1| step value of range of the coordinate variable|-! scope="row" | function| text string
| -
| x
| mathematical expression in the local coordinate variable
|-
! scope="row" | y(t)start_angle| text stringreal numeric| -degrees| t0 | mathematical expression in the variable t (only for parametric curve)start azimuth angle
|-
! scope="row" | z(t)end_angle| text stringreal numeric| -degrees| t360 | mathematical expression in the variable t (only for parametric curve)end azimuth angle
|}
<tr>
<td>
[[Image:cad_curve10cad_solid4torus.png|thumb|left|480px|The curve generator property dialog showing of the default Cartesian curvetorus object.]]
</td>
</tr>
</table>
<table>
<tr>
<td>
[[Image:Cad curve11_newresize_torus_new.png|thumb|left|550px|The default Cartesian curve created by geometry of the curve generatortorus object.]]
</td>
</tr>
</table>
<table>
<tr>
<td>
[[Image:Cad curve12_newcad_solid4torus_2nd.png|thumb|left|480px|The curve generator property dialog showing of the torus with a super-quadratic helical parametric curvenonzero start and end angle.]]
</td>
</tr>
</table>
<table>
<tr>
<td>
[[Image:Cad curve13_new07b_torus_tn_new.png|thumb|left|550px|The super-quadratic helical parametric curve created by the curve generatorA torus with a nonzero start and end angle.]]
</td>
</tr>
</table>
== Point Triangle Strip Tool ==
ICON: [[File:point_tool_tntrianglestrip_tool_tn.png]]
MENU: '''Object → Special Surface → PointTriangle Strip'''
TO DRAW A POINTTRIANGLE STRIP:
# Activate the '''Point Triangle Strip Tool'''. # Left-click to establish the location triangles origin.# Drag away from the origin and left-click a second time to define Leg 1 of the pointtriangle.# Drag away from leg 1, left-click a third time to define Leg 2 and complete the triangle.
NOTES, SPECIAL CASES OR EXCEPTIONS: '''Side 1''' establish the length of first leg of the triangle. '''Side 2''' establishes the length of the second leg of the triangle '''Angle''' defines the opening angle of the origin vertex (the angle between leg one and leg two). Hold down the {{key|Shift}} key while positioning the third point of the triangle to constrain the origin angle to 15º increments.
PYTHON COMMAND: point(label,x0,y0,z0)
PYTHON COMMAND: triangle_strip(label,x0,y0,z0,side1,side2,angle)
POINT PARAMETERS
{| class="wikitable"
|-
! scope="col"| Parameter Name
! scope="col"| Value Type
! scope="col"| Units
! scope="col"| Default Value
! scope="col"| Notes
|-
! scope="row" | LCS_X
| real numeric
| project units
| -
| X-coordinate of point
|-
! scope="row" | LCS_Y
| real numeric
| project units
| -
| Y-coordinate of point
|-
! scope="row" | LCS_Z
| real numeric
| project units
| -
| Z-coordinate of point
|}
[[File:point_new.png]]Â == Fractal Tree Tool ==Â ICON: [[File:fractal_tool_tn.png]] Â MENU: '''Object → Special → Fractal Tree'''Â TO DRAW A FRACTAL TREE:Â # Activate the '''Fractal Tree Tool'''. # Left-click to establish the location of the fractal tree. A default horizontal fractal tree appears in the project workspace.# The fractal dialog opens up on the lower right corner of the screen. You have two options: fractal tree with linear or cylindrical branches. You can also set the number of fractal levels.# Make sure to click the OK button of the dialog to complete the fractal construction. Â NOTES, SPECIAL CASES OR EXCEPTIONS: The parameter '''Gen. Factor''' determines how many new next-level branches are generated at the end of each branch. '''Separation Angle''' sets the angle between each pair of branches at each node. The '''Prune Factor''' determines what percentage of branches are removed randomly at each node. With a default zero prune factor, all the branches are kept. The parameter '''Thickness''' represents the diameter of the main branch in the case of a cylinder key object. The parameter '''Thickness Factor''' determines the tapering of each cylindrical branch from its start point to the end point. A zero thickness factor means no branch tapering. Â You can change the coordinates of the LCS of a fractal tree or its rotation angle. From the fractal dialog, you can also access the properties of the key object by clicking the {{key|Edit Primitive...}} button of this dialog. Â {{Note|Fractal tree operations are usually very time consuming especially when the key object type is a cylinder. Please be patient while [[EM.Cube]] is running fractal tree creation or edit operations.}}Â Â PYTHON COMMAND: fractal_tree(label,x0,y0,z0,key_type,key_size,n_level,sep_angle,n_gen,prune_factor,thickness,thick_factor)Â Â FRACTAL TREE TRIANGLE STRIP PARAMETERS
{| class="wikitable"
|-
| local rotation about Z-axis
|-
! scope="row" | key_object_type| Line or Cylinder| - | Line | -|-! scope="row" | level_count| integer numeric| -| 3| number of fractal levels|-! scope="row" | separation_angleside_1
| real numeric
| degrees| 30| angle between two adjacent branchesproject units |-! scope="row" | generation_factor| integer numeric
| -
| 3
| Number of new branches generated at each node
|-
! scope="row" | prune_factorside_2
| real numeric
| project units
| 0
| -
| 0
| A number between 0 and 1 representing the percentage of branches randomly deleted
|-
! scope="row" | thickness| real numeric| project units| 1| diameter of branches |-! scope="row" | thickness_factorangle
| real numeric
| degrees
| -
| 0.2| A number between 0 and 1 representing the percentage of tapering of each cylindrical branch upwardwedge angle
|}
<tr>
<td>
[[Image:CAD MAN20cad_surf5.png|thumb|left|480px|The fractal tree property dialogof the triangle strip object.]]
</td>
</tr>
<tr>
<td>
[[Image:CAD MAN21resize_triangle_strip_new.png|thumb|left|550px|The geometry of a fractal tree with a line key object.]] </td></tr></table><table><tr><td> [[Image:CAD MAN22.png|thumb|left|550px|The geometry of a fractal tree with a cylinder key the triangle strip object.]]
</td>
</tr>
</table>
<pbr /> Â </phr>Â [[Image:Top_icon.png|48px30px]] '''[[#Box_Tool | Back to the Top of the Page]]'''
[[Image:Back_icon.png|40px30px]] '''[[Building_Geometrical_Constructions_in_CubeCAD | Back to CubeCAD Page]]'''
[[Image:Back_icon.png|40px30px]] '''[[EM.Cube | Back to EM.Cube Main Page]]'''