Changes

EM.Terrano

58 bytes added, 14:28, 2 June 2015
/* Building a Propagation Scene */
Most outdoor and indoor propagation scenes include a flat ground at their bottom, which bounces incident rays back into the scene. [[EM.Cube]]'s [[Propagation Module]] provides a global flat ground at z = 0. The global ground indeed acts as an impenetrable surface that blocks the entire computational domain from the z = 0 plane downward. It is displayed as a translucent green plane at z = 0 extending downward. The color of the ground plane is always the same as the color of the ray domain. The global ground is assumed to be made of a homogeneous dielectric material with a specified permittivity &epsilon;<sub>r</sub> and electric conductivity &sigma;. By default, a rocky ground is assumed with &epsilon;<sub>r</sub> = 5 and &sigma; = 0.005 S/m. You can remove the global ground, in which case, you will have a free space scene. To disable the global ground, open up the Global Ground Settings Dialog, which can be accessed by right clicking on the '''Global Ground''' item in the Navigation Tree and selecting '''Global Ground Settings... '''Remove the check mark from the box labeled '''&quot;Include Half-Space Ground (z&lt;0)&quot;''' to disable the global ground. This will also remove the green translucent plane from the bottom of your scene. You can also change the material properties of the global ground and set new values for the permittivity and electric conductivity of the impenetrable, half-space, dielectric medium. '''Do not forget to disable the global ground if you want to model a free space propagation scene.'''
=== Buildings , Terrain & Obstructing Blocks ===
Impenetrable, penetrable and terrain surfaces and penetrable volumes represent buildings, blocks or objects that obstruct the propagation of electromagnetic waves (rays) in the free space. What differentiates them is the types of physical phenomena that are used to model their interaction with the impinging rays. The field intensity, phase and power of the reflected and transmitted rays depend on the material properties of the obstructing surface. The specular surface can be modeled as a simple homogeneous dielectric half-space or as a multilayer structure. In that respect, the buildings, walls, terrain or even the global ground all behave in a similar way:
| Tessellated Objects Only
|}
 
Click here to learn more about [[Block Types]].
=== Impenetrable Surfaces For Outdoor Scenes ===
28,333
edits